Semin Hear 2011; 32(3): 217-228
DOI: 10.1055/s-0031-1286616
© Thieme Medical Publishers

Mechanisms Involved in Ototoxicity

Peter S. Steyger1
  • 1Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon
Further Information

Publication History

Publication Date:
23 September 2011 (online)

ABSTRACT

The modern era of evidence-based ototoxicity emerged in the 1940s following the discovery of aminoglycosides and their ototoxic side effects. New classes of ototoxins have been identified in subsequent decades, notably loop diuretics, antineoplastic drugs, and metal chelators. Ototoxic drugs are frequently nephrotoxic, as both organs regulate fluid and ion composition. The mechanisms of ototoxicity are as diverse as the pharmacological properties of each ototoxin, though the generation of toxic levels of reactive oxygen species appears to be a common denominator. As mechanisms of cytotoxicity for each ototoxin continue to be elucidated, a new frontier in ototoxicity is emerging: How do ototoxins cross the blood-labyrinth barrier that tightly regulates the composition of the inner ear fluids? Increased knowledge of the mechanisms by which systemic ototoxins are trafficked across the blood-labyrinth barrier into the inner ear is critical to developing new pharmacotherapeutic agents that target the blood-labyrinth barrier to prevent trafficking of ototoxic drugs and their cytotoxic sequelae.

REFERENCES

  • 1 Schacht J, Hawkins J E. Sketches of otohistory. Part 11: Ototoxicity: drug-induced hearing loss.  Audiol Neurootol. 2006;  11 1-6
  • 2 Liang G H, Järlebark L, Ulfendahl M, Moore E J. Mercury (Hg2+) suppression of potassium currents of outer hair cells.  Neurotoxicol Teratol. 2003;  25 349-359
  • 3 Huang C F, Hsu C J, Liu S H, Lin-Shiau S Y. Ototoxicity induced by cinnabar (a naturally occurring HgS) in mice through oxidative stress and down-regulated Na(+)/K(+)-ATPase activities.  Neurotoxicology. 2008;  29 386-396
  • 4 Hennebert D, Fernández C. Ototoxicity of quinine in experimental animals.  AMA Arch Otolaryngol. 1959;  70 321-333
  • 5 Nielsen-Abbring F W, Perenboom R M, van der Hulst R J. Quinine-induced hearing loss.  ORL J Otorhinolaryngol Relat Spec. 1990;  52 65-68
  • 6 Jung T T, Rhee C K, Lee C S, Park Y S, Choi D C. Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs, and quinine.  Otolaryngol Clin North Am. 1993;  26 791-810
  • 7 Mêlier F. Experiences et observations sur les proprietes toxiques du sulfate de quinine memoire lu a l'Academie royale de medicine dans la seance du 14 fevrier.  Mêm Acad Mêd. 1843;  10 722-745
  • 8 Deer B C, Hunter-Duvar I. Salicylate ototoxicity in the chinchilla: a behavioral and electron microscope study.  J Otolaryngol. 1982;  11 260-264
  • 9 Marson P, Pasero G. The Italian contributions to the history of salicylates.  Reumatismo. 2006;  58 66-75
  • 10 Schatz A, Bugie E, Waksman S. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria.  Proc Soc Exptl Biol Med. 1944;  55 66-69
  • 11 Waksman S A. Streptomycin and neomycin: an antibiotic approach to tuberculosis.  BMJ. 1950;  2 595-600
  • 12 Hinshaw H C, Feldman W H. Streptomycin in treatment of clinical tuberculosis: a preliminary report.  Proc Staff Meet Mayo Clin. 1945;  20 313-318
  • 13 Pillers D M, Schleiss M R. Gentamicin in the clinical setting.  Volta Review. 2005;  105 205-210
  • 14 Kahlmeter G, Dahlager J I. Aminoglycoside toxicity—a review of clinical studies published between 1975 and 1982.  J Antimicrob Chemother. 1984;  13 (Suppl A) 9-22
  • 15 Fausti S A, Henry J A, Schaffer H I, Olson D J, Frey R H, McDonald W J. High-frequency audiometric monitoring for early detection of aminoglycoside ototoxicity.  J Infect Dis. 1992;  165 1026-1032
  • 16 Garrison M W, Zaske D E, Rotschafer J C. Aminoglycosides: another perspective.  DICP. 1990;  24 267-272
  • 17 Ryan A F, Bone R C. Potentiation of kanamycin ototoxicity by a history of noise exposure.  Otolaryngology. 1978;  86 ORL-125-ORL-128
  • 18 Ryan A F, Bone R C. Non-simultaneous interaction of exposure to noise and kanamycin intoxication in the chinchilla.  Am J Otolaryngol. 1982;  3 264-272
  • 19 Li H, Steyger P S. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics.  Noise Health. 2009;  11 26-32
  • 20 Hoffman D W, Whitworth C A, Jones-King K L, Rybak L P. Potentiation of ototoxicity by glutathione depletion.  Ann Otol Rhinol Laryngol. 1988;  97 36-41
  • 21 Lautermann J, McLaren J, Schacht J. Glutathione protection against gentamicin ototoxicity depends on nutritional status.  Hear Res. 1995;  86 15-24
  • 22 Manian F A, Stone W J, Alford R H. Adverse antibiotic effects associated with renal insufficiency.  Rev Infect Dis. 1990;  12 236-249
  • 23 Brummett R E. Effects of antibiotic-diuretic interactions in the guinea pig model of ototoxicity.  Rev Infect Dis. 1981;  3 (suppl) S216-S223
  • 24 Bates D E, Beaumont S J, Baylis B W. Ototoxicity induced by gentamicin and furosemide.  Ann Pharmacother. 2002;  36 446-451
  • 25 Ginsburg D S, Quintanilla A P, Levin M. Renal glycosuria due to gentamicin in rabbits.  J Infect Dis. 1976;  134 119-122
  • 26 Sassen M C, Kim S W, Kwon T H et al.. Dysregulation of renal sodium transporters in gentamicin-treated rats.  Kidney Int. 2006;  70 1026-1037
  • 27 Vital Brazil O, Prado-Franceschi J. The nature of neuromuscular block produced by neomycin and gentamicin.  Arch Int Pharmacodyn Ther. 1969;  179 78-85
  • 28 Corrado A P, de Morais I P, Prado W A. Aminoglycoside antibiotics as a tool for the study of the biological role of calcium ions. Historical overview.  Acta Physiol Pharmacol Latinoam. 1989;  39 419-430
  • 29 Pichler M, Wang Z, Grabner-Weiss C et al.. Block of P/Q-type calcium channels by therapeutic concentrations of aminoglycoside antibiotics.  Biochemistry. 1996;  35 14659-14664
  • 30 Dulon D, Zajic G, Aran J M, Schacht J. Aminoglycoside antibiotics impair calcium entry but not viability and motility in isolated cochlear outer hair cells.  J Neurosci Res. 1989;  24 338-346
  • 31 Kang H S, Kerstan D, Dai L, Ritchie G, Quamme G A. Aminoglycosides inhibit hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells.  Can J Physiol Pharmacol. 2000;  78 595-602
  • 32 Quamme G A. Renal handling of magnesium: drug and hormone interactions.  Magnesium. 1986;  5 248-272
  • 33 Kidwell D T, McKeown J W, Grider J S, McCombs G B, Ott C E, Jackson B A. Acute effects of gentamicin on thick ascending limb function in the rat.  Eur J Pharmacol. 1994;  270 97-103
  • 34 Ward D T, McLarnon S J, Riccardi D. Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor.  J Am Soc Nephrol. 2002;  13 1481-1489
  • 35 Kroese A B, Das A, Hudspeth A J. Blockage of the transduction channels of hair cells in the bullfrog's sacculus by aminoglycoside antibiotics.  Hear Res. 1989;  37 203-217
  • 36 Marcotti W, van Netten S M, Kros C J. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels.  J Physiol. 2005;  567 (Pt 2) 505-521
  • 37 Karasawa T, Wang Q, Fu Y, Cohen D M, Steyger P S. TRPV4 enhances the cellular uptake of aminoglycoside antibiotics.  J Cell Sci. 2008;  121 (Pt 17) 2871-2879
  • 38 Myrdal S E, Steyger P S. TRPV1 regulators mediate gentamicin penetration of cultured kidney cells.  Hear Res. 2005;  204 170-182
  • 39 Hirose K, Westrum L E, Stone J S, Zirpel L, Rubel E W. Dynamic studies of ototoxicity in mature avian auditory epithelium.  Ann N Y Acad Sci. 1999;  884 389-409
  • 40 Hirose K, Hockenbery D M, Rubel E W. Reactive oxygen species in chick hair cells after gentamicin exposure in vitro.  Hear Res. 1997;  104 1-14
  • 41 Clerici W J, DiMartino D L, Prasad M R. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro.  Hear Res. 1995;  84 30-40
  • 42 Forge A, Schacht J. Aminoglycoside antibiotics.  Audiol Neurootol. 2000;  5 3-22
  • 43 Rybak L P, Talaska A E, Schacht J. Drug-induced hearing loss. In: Schacht J, Popper A N, Fay R R, eds. Auditory Trauma, Protection, and Repair. New York: Springer; 2008: 219-256
  • 44 Jiang H, Sha S H, Forge A, Schacht J. Caspase-independent pathways of hair cell death induced by kanamycin in vivo.  Cell Death Differ. 2006;  13 20-30
  • 45 Tulkens P M. Nephrotoxicity of aminoglycoside antibiotics.  Toxicol Lett. 1989;  46 107-123
  • 46 Hiel H, Schamel A, Erre J P, Hayashida T, Dulon D, Aran J M. Cellular and subcellular localization of tritiated gentamicin in the guinea pig cochlea following combined treatment with ethacrynic acid.  Hear Res. 1992;  57 157-165
  • 47 Harrison R V, Evans E F. The effects of hair cell loss (restricted to outer hair cells) on the threshold and tuning properties of cochlear fibres in the guinea pig. In: Portmann M, Aran J M, eds. Inner Ear Biology. Paris: INSERM; 1977: 105-124
  • 48 Dallos P, Harris D. Properties of auditory nerve responses in absence of outer hair cells.  J Neurophysiol. 1978;  41 365-383
  • 49 Löwenheim H, Furness D N, Kil J et al.. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti.  Proc Natl Acad Sci U S A. 1999;  96 4084-4088
  • 50 Wangemann P, Schacht J. Homeostatic mechanisms in the cochlea. In: Dallos P, Popper A N, Fay R R, eds. The Cochlea. New York: Springer-Verlag; 1996: 130-185
  • 51 Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells.  Brain Res. 1995;  704 135-140
  • 52 Tran Ba Huy P, Bernard P, Schacht J. Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs.  J Clin Invest. 1986;  77 1492-1500
  • 53 Tran Ba Huy P, Manuel C, Meulemans A, Sterkers O, Amiel C. Pharmacokinetics of gentamicin in perilymph and endolymph of the rat as determined by radioimmunoassay.  J Infect Dis. 1981;  143 476-486
  • 54 Wang Q, Steyger P S. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells.  J Assoc Res Otolaryngol. 2009;  10 205-219
  • 55 Dai C F, Steyger P S. A systemic gentamicin pathway across the stria vascularis.  Hear Res. 2008;  235 114-124
  • 56 Yamane H, Nakai Y, Konishi K. Furosemide-induced alteration of drug pathway to cochlea.  Acta Otolaryngol Suppl. 1988;  447 28-35
  • 57 Salt A N. Pharmacokinetics of drug entry into cochlear fluids.  Volta Review. 2005;  105 277-298
  • 58 Aran J M, Erre J P, Lima da Costa D, Debbarh I, Dulon D. Acute and chronic effects of aminoglycosides on cochlear hair cells.  Ann N Y Acad Sci. 1999;  884 60-68
  • 59 Gale J E, Marcotti W, Kennedy H J, Kros C J, Richardson G P. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel.  J Neurosci. 2001;  21 7013-7025
  • 60 Wang J, Schmitt N, Rubel E W et al.. Rapid hearing loss and hair cell degeneration following acute intracochlear perfusion of neomycin in guinea pigs. 32nd Annual Midwinter Meeting of the Association for Research in Otolaryngology, February 14–19, Baltimore, Maryland.  2009;  32 1003
  • 61 Royal National Institute for the Deaf (RNID) .Ototoxicity and otoprotective report. London, UK;
  • 62 Knight K R, Kraemer D F, Neuwelt E A. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development.  J Clin Oncol. 2005;  23 8588-8596
  • 63 Knight K R, Kraemer D F, Winter C, Neuwelt E A. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions.  J Clin Oncol. 2007;  25 1190-1195
  • 64 Gill J S, Windebank A J. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle.  J Clin Invest. 1998;  101 2842-2850
  • 65 Daugaard G, Holstein-Rathlou N H, Leyssac P P. Effect of cisplatin on proximal convoluted and straight segments of the rat kidney.  J Pharmacol Exp Ther. 1988;  244 1081-1085
  • 66 Field M J, Bostrom T E, Seow F, Györy A Z, Cockayne D J. Acute cisplatin nephrotoxicity in the rat. Evidence for impaired entry of sodium into proximal tubule cells.  Pflugers Arch. 1989;  414 647-650
  • 67 Bubley G J, Xu J, Kupiec N et al.. Effect of DNA conformation on cisplatin adduct formation.  Biochem Pharmacol. 1996;  51 717-721
  • 68 Park M S, De Leon M, Devarajan P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways.  J Am Soc Nephrol. 2002;  13 858-865
  • 69 Davis C A, Nick H S, Agarwal A. Manganese superoxide dismutase attenuates Cisplatin-induced renal injury: importance of superoxide.  J Am Soc Nephrol. 2001;  12 2683-2690
  • 70 Bragado P, Armesilla A, Silva A, Porras A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation.  Apoptosis. 2007;  12 1733-1742
  • 71 García-Berrocal J R, Nevado J, Ramírez-Camacho R et al.. The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear.  Br J Pharmacol. 2007;  152 1012-1020
  • 72 Schaefer S D, Post J D, Close L G, Wright C G. Ototoxicity of low- and moderate-dose cisplatin.  Cancer. 1985;  56 1934-1939
  • 73 Sergi B, Ferraresi A, Troiani D, Paludetti G, Fetoni A R. Cisplatin ototoxicity in the guinea pig: vestibular and cochlear damage.  Hear Res. 2003;  182 56-64
  • 74 Laurell G, Ekborn A, Viberg A, Canlon B. Effects of a single high dose of cisplatin on the melanocytes of the stria vascularis in the guinea pig.  Audiol Neurootol. 2007;  12 170-178
  • 75 Sinani D, Adle D J, Kim H, Lee J. Distinct mechanisms for Ctr1-mediated copper and cisplatin transport.  J Biol Chem. 2007;  282 26775-26785
  • 76 Ishida S, Lee J, Thiele D J, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals.  Proc Natl Acad Sci U S A. 2002;  99 14298-14302
  • 77 More S S, Akil O, Ianculescu A G, Geier E G, Lustig L R, Giacomini K M. Role of the copper transporter Ctr1 in platinum-induced ototoxicity.  J Neurosci. 2010;  30 9500-9509
  • 78 Song I S, Savaraj N, Siddik Z H et al.. Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells.  Mol Cancer Ther. 2004;  3 1543-1549
  • 79 Holzer A K, Samimi G, Katano K et al.. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells.  Mol Pharmacol. 2004;  66 817-823
  • 80 Katano K, Kondo A, Safaei R et al.. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper.  Cancer Res. 2002;  62 6559-6565
  • 81 Zisowsky J, Koegel S, Leyers S et al.. Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells.  Biochem Pharmacol. 2007;  73 298-307
  • 82 Daniel K G, Harbach R H, Guida W C, Dou Q P. Copper storage diseases: Menkes, Wilsons, and cancer.  Front Biosci. 2004;  9 2652-2662
  • 83 Safaei R, Larson B J, Cheng T C et al.. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells.  Mol Cancer Ther. 2005;  4 1595-1604
  • 84 Katano K, Safaei R, Samimi G et al.. Confocal microscopic analysis of the interaction between cisplatin and the copper transporter ATP7B in human ovarian carcinoma cells.  Clin Cancer Res. 2004;  10 4578-4588
  • 85 Koepsell H. Polyspecific organic cation transporters: their functions and interactions with drugs.  Trends Pharmacol Sci. 2004;  25 375-381
  • 86 Ciarimboli G, Ludwig T, Lang D et al.. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2.  Am J Pathol. 2005;  167 1477-1484
  • 87 Filipski K K, Mathijssen R H, Mikkelsen T S, Schinkel A H, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity.  Clin Pharmacol Ther. 2009;  86 396-402
  • 88 Kuo Y M, Gybina A A, Pyatskowit J W, Gitschier J, Prohaska J R. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status.  J Nutr. 2006;  136 21-26
  • 89 Choi B S, Zheng W. Copper transport to the brain by the blood-brain barrier and blood-CSF barrier.  Brain Res. 2009;  1248 14-21
  • 90 Jonker J W, Wagenaar E, Van Eijl S, Schinkel A H. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations.  Mol Cell Biol. 2003;  23 7902-7908
  • 91 Thomas J P, Lautermann J, Liedert B, Seiler F, Thomale J. High accumulation of platinum-DNA adducts in strial marginal cells of the cochlea is an early event in cisplatin but not carboplatin ototoxicity.  Mol Pharmacol. 2006;  70 23-29
  • 92 Lambert M P, Shields C, Meadows A T. A retrospective review of hearing in children with retinoblastoma treated with carboplatin-based chemotherapy.  Pediatr Blood Cancer. 2008;  50 223-226
  • 93 Steyger P S. Potentiation of chemical ototoxicity by noise.  Semin Hear. 2009;  30 38-46
  • 94 Fechter L D, Gearhart C, Fulton S et al.. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats.  Toxicol Sci. 2007;  98 510-525
  • 95 Sullivan M J, Rarey K E, Conolly R B. Ototoxicity of toluene in rats.  Neurotoxicol Teratol. 1988;  10 525-530
  • 96 Lataye R, Campo P. Combined effects of a simultaneous exposure to noise and toluene on hearing function.  Neurotoxicol Teratol. 1997;  19 373-382
  • 97 Matz G J. The ototoxic effects of ethacrynic acid in man and animals.  Laryngoscope. 1976;  86 1065-1086
  • 98 Nin F, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y. The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear.  Proc Natl Acad Sci U S A. 2008;  105 1751-1756
  • 99 Rybak L P. Ototoxicity of loop diuretics.  Otolaryngol Clin North Am. 1993;  26 829-844
  • 100 Dai C F, Mangiardi D, Cotanche D A, Steyger P S. Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo.  Hear Res. 2006;  213 64-78
  • 101 Tange R A, Dreschler W A, Claessen F A, Perenboom R M. Ototoxic reactions of quinine in healthy persons and patients with Plasmodium falciparum infection.  Auris Nasus Larynx. 1997;  24 131-136
  • 102 Farris H E, LeBlanc C L, Goswami J, Ricci A J. Probing the pore of the auditory hair cell mechanotransducer channel in turtle.  J Physiol. 2004;  558 (Pt 3) 769-792
  • 103 Dieler R, Davies C, Shehata-Dieler W E. The effects of quinine on active motile responses and fine structure of isolated outer hair cells from the guinea pig cochlea.  Laryngorhinootologie. 2002;  81 196-203
  • 104 Lewis Jr H D, Davis J W, Archibald D G et al.. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative Study.  N Engl J Med. 1983;  309 396-403
  • 105 Jiang H, Sha S H, Schacht J. NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity.  J Neurosci Res. 2005;  79 644-651
  • 106 Minami S B, Sha S H, Schacht J. Antioxidant protection in a new animal model of cisplatin-induced ototoxicity.  Hear Res. 2004;  198 137-143
  • 107 Sha S H, Qiu J H, Schacht J. Aspirin to prevent gentamicin-induced hearing loss.  N Engl J Med. 2006;  354 1856-1857
  • 108 Sha S H, Schacht J. Salicylate attenuates gentamicin-induced ototoxicity.  Lab Invest. 1999;  79 807-813
  • 109 Chen Y, Huang W G, Zha D J et al.. Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic.  Hear Res. 2007;  226 178-182
  • 110 Mohr P E, Feldman J J, Dunbar J L et al.. The societal costs of severe to profound hearing loss in the United States.  Int J Technol Assess Health Care. 2000;  16 1120-1135
  • 111 Naramura H, Nakanishi N, Tatara K, Ishiyama M, Shiraishi H, Yamamoto A. Physical and mental correlates of hearing impairment in the elderly in Japan.  Audiology. 1999;  38 24-29
  • 112 Jones E M, White A J. Mental health and acquired hearing impairment: a review.  Br J Audiol. 1990;  24 3-9
  • 113 Mehl A L, Thomson V. Newborn hearing screening: the great omission.  Pediatrics. 1998;  101 E4
  • 114 Järvelin M R, Mäki-Torkko E, Sorri M J, Rantakallio P T. Effect of hearing impairment on educational outcomes and employment up to the age of 25 years in northern Finland.  Br J Audiol. 1997;  31 165-175
  • 115 Tambs K. Moderate effects of hearing loss on mental health and subjective well-being: results from the Nord-Trøndelag Hearing Loss Study.  Psychosom Med. 2004;  66 776-782
  • 116 Bent III J P, Beck R A. Bacterial meningitis in the pediatric population: paradigm shifts and ramifications for otolaryngology-head and neck surgery.  Int J Pediatr Otorhinolaryngol. 1994;  30 41-49
  • 117 Liu W, Staecker H, Stupak H, Malgrange B, Lefebvre P, Van De Water T R. Caspase inhibitors prevent cisplatin-induced apoptosis of auditory sensory cells.  Neuroreport. 1998;  9 2609-2614
  • 118 Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U. Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death.  Hear Res. 2002;  163 71-81
  • 119 Ding D, Stracher A, Salvi R J. Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity.  Hear Res. 2002;  164 115-126
  • 120 Kawamoto K, Sha S H, Minoda R et al.. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity.  Mol Ther. 2004;  9 173-181
  • 121 Wu W J, Sha S H, McLaren J D, Kawamoto K, Raphael Y, Schacht J. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat.  Hear Res. 2001;  158 165-178
  • 122 McFadden S L, Ding D, Salvemini D, Salvi R J. M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity.  Toxicol Appl Pharmacol. 2003;  186 46-54
  • 123 Eatock R A, Corey D P, Hudspeth A J. Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus.  J Neurosci. 1987;  7 2821-2836
  • 124 Zheng J, Dai C, Steyger P S et al.. Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of corti.  J Neurophysiol. 2003;  90 444-455
  • 125 Karasawa T, Wang Q, Fu Y, Cohen D M, Steyger P S. TRPV4 enhances the cellular uptake of aminoglycoside antibiotics.  J Cell Sci. 2008;  121 (Pt 17) 2871-2879
  • 126 Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M. Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear.  Acta Otolaryngol. 2005;  125 929-934

Peter S SteygerPh.D. 

Oregon Hearing Research Center, Oregon Health and Science University

Portland, OR 97239

Email: steygerp@ohsu.edu

    >