Semin Musculoskelet Radiol 2011; 15(3): 301-306
DOI: 10.1055/s-0031-1278428
© Thieme Medical Publishers

From Gaucher's Disease to Metabolic Radiology: Translational Radiological Research and Clinical Practice

Mario Maas1 , Marielle Kuijper1 , Erik M. Akkerman1
  • 1Department of Radiology, University of Amsterdam, Amsterdam, The Netherlands
Further Information

Publication History

Publication Date:
03 June 2011 (online)

ABSTRACT

Imaging has an increasing role in the management of patients with inborn errors of metabolism. This role is related to expensive enzyme replacement therapy that requires a surrogate biomarker, such as magnetic resonance imaging. This review paper raises the issue of the potential for metabolic radiology to become a subspecialty.

REFERENCES

  • 1 Beutler E, Grabowski G A. Glucosylceramide liposes: Gaucher disease. In: Sciver C R, Beaudet A L, Sly W S, Valle D, eds. The Metabolic and Molecular Basis of Inherited Diseases. New York, NY: McGraw-Hill; 1995: 2641-2670
  • 2 Rosenthal D I, Scott J A, Barranger J et al.. Evaluation of Gaucher disease using magnetic resonance imaging.  J Bone Joint Surg Am. 1986;  68 (6) 802-808
  • 3 Lanir A, Hadar H, Cohen I et al.. Gaucher disease: assessment with MR imaging.  Radiology. 1986;  161 (1) 239-244
  • 4 O'Keefe D, Rosenthal D I. Computed tomography and magnetic resonance imaging in Gaucher's disease. In: Bloem J L, Sartoris D J, eds. MRI and CT of the Musculoskeletal System: A Text-Atlas. Baltimore, MD: William & Wilkins; 1992: 130
  • 5 Rosenthal D I, Barton N W, McKusick K A et al.. Quantitative imaging of Gaucher disease.  Radiology. 1992;  185 (3) 841-845
  • 6 Vogler III J B, Murphy W A. Bone marrow imaging.  Radiology. 1988;  168 (3) 679-693
  • 7 Nyce J M, Steele J S, Gunderman R B. Bridging the knowledge divide in radiology education.  Radiology. 2006;  239 (3) 629-631
  • 8 Dixon W T. Simple proton spectroscopic imaging.  Radiology. 1984;  153 (1) 189-194
  • 9 Miller S P, Zirzow G C, Doppelt S H, Brady R O, Barton N W. Analysis of the lipids of normal and Gaucher bone marrow.  J Lab Clin Med. 1996;  127 (4) 353-358
  • 10 Hollak C, Maas M, Akkerman E, den Heeten A, Aerts H. Dixon quantitative chemical shift imaging is a sensitive tool for the evaluation of bone marrow responses to individualized doses of enzyme supplementation therapy in type 1 Gaucher disease.  Blood Cells Mol Dis. 2001;  27 (6) 1005-1012
  • 11 Johnson L A, Hoppel B E, Gerard E L et al.. Quantitative chemical shift imaging of vertebral bone marrow in patients with Gaucher disease.  Radiology. 1992;  182 (2) 451-455
  • 12 Maas M, Akkerman E M, Venema H W, Stoker J, Den Heeten G J. Dixon quantitative chemical shift MRI for bone marrow evaluation in the lumbar spine: a reproducibility study in healthy volunteers.  J Comput Assist Tomogr. 2001;  25 (5) 691-697
  • 13 Rosen B R, Fleming D M, Kushner D C et al.. Hematologic bone marrow disorders: quantitative chemical shift MR imaging.  Radiology. 1988;  169 (3) 799-804
  • 14 Akkerman E M, Maas M. A region-growing algorithm to simultaneously remove dephasing influences and separate fat and water in two-point Dixon imaging.  Paper presented at: Society for Magnetic Resonance in Medicine and the European Society for Magnetic Resonance in Medicine and Biology Meeting; 1995; Berkeley, California
  • 15 Maas M, Hollak C E, Akkerman E M, Aerts J F. Radiology of Gaucher disease (type 1) and bone manifestations: the Dutch experience.  JBR-BTR. 2006;  89 (6) 318-321
  • 16 Maas M, Hollak C E, Akkerman E M, Aerts J M, Stoker J, Den Heeten G J. Quantification of skeletal involvement in adults with type I Gaucher's disease: fat fraction measured by Dixon quantitative chemical shift imaging as a valid parameter.  AJR Am J Roentgenol. 2002;  179 (4) 961-965
  • 17 Boomsma J M, van Dussen L, Wiersma M G et al.. Spontaneous regression of disease manifestations can occur in type 1 Gaucher disease; results of a retrospective cohort study.  Blood Cells Mol Dis. 2010;  44 (3) 181-187
  • 18 Cox T M, Aerts J M, Belmatoug N et al.. Management of non-neuronopathic Gaucher disease with special reference to pregnancy, splenectomy, bisphosphonate therapy, use of biomarkers and bone disease monitoring.  J Inherit Metab Dis. 2008;  31 (3) 319-336
  • 19 Vom Dahl S, Poll L, Di Rocco M et al.. Evidence-based recommendations for monitoring bone disease and the response to enzyme replacement therapy in Gaucher patients.  Curr Med Res Opin. 2006;  22 (6) 1045-1064
  • 20 Aerts J M, van Breemen M J, Bussink A P et al.. Biomarkers for lysosomal storage disorders: identification and application as exemplified by chitotriosidase in Gaucher disease.  Acta Paediatr Suppl. 2008;  97 (457) 7-14
  • 21 Maas M, Hangartner T, Mariani G et al.. Recommendations for the assessment and monitoring of skeletal manifestations in children with Gaucher disease.  Skeletal Radiol. 2008;  37 (3) 185-188
  • 22 Vanhoenacker F M, Maas M. Guidelines for Belgian MR centers for monitoring of bone marrow involvement in patients with Gaucher disease.  JBR-BTR. 2006;  89 (6) 321-324
  • 23 Poll L W, Cox M L, Godehardt E, Steinhof V, vom Dahl S. Whole body MRI in type I Gaucher patients: evaluation of skeletal involvement.  Blood Cells Mol Dis. 2011;  46 (1) 53-59
  • 24 Robertson P L, Maas M, Goldblatt J. Semiquantitative assessment of skeletal response to enzyme replacement therapy for Gaucher's disease using the bone marrow burden score.  AJR Am J Roentgenol. 2007;  188 (6) 1521-1528
  • 25 Maas M, van Kuijk C, Stoker J et al.. Quantification of bone involvement in Gaucher disease: MR imaging bone marrow burden score as an alternative to Dixon quantitative chemical shift MR imaging—initial experience.  Radiology. 2003;  229 (2) 554-561
  • 26 de Fost M, Hollak C E, Groener J E et al.. Superior effects of high-dose enzyme replacement therapy in type 1 Gaucher disease on bone marrow involvement and chitotriosidase levels: a 2-center retrospective analysis.  Blood. 2006;  108 (3) 830-835
  • 27 DeMayo R F, Haims A H, McRae M C, Yang R, Mistry P K. Correlation of MRI-based bone marrow burden score with genotype and spleen status in Gaucher's disease.  AJR Am J Roentgenol. 2008;  191 (1) 115-123
  • 28 SPHINX Amsterdam Lysosome Center. Mission statement. University of Amsterdam Academic Medical Center (AMC) Web site. Available at: http://www.amc.nl/index.cfm?pid=8626 Accessed February 4, 2011
  • 29 SPHINX Amsterdam Lysosome Center. Education program. University of Amsterdam Academic Medical Center (AMC) Web site. Available at: http://www.amc.nl/index.cfm?pid=9327 Accessed January 16, 2011
  • 30 Garrod A. The incidence of alkaptonuria: a study in chemical individuality.  Lancet. 1902;  2 1616-1620
  • 31 C.E.M. Hollak: Who is who in research: AMC. University of Amsterdam Academic Medical Center (AMC) Web site. Available at: http://www.amc.uva.nl/?pid=6454&rm=person&medewerkerid=446 Accessed February 6, 2011
  • 32 Professor Carla Hollak receives the sixth Alan Gordon Memorial Award. Gauchers Association Web site. Available at: http://www.gaucher.org.uk/enews.php?id=326 Accessed January 12, 2011
  • 33 Hendriksz C J. Inborn errors of metabolism for the diagnostic radiologist.  Pediatr Radiol. 2009;  39 (3) 211-220
  • 34 Northover H, Cowie R A, Wraith J E. Mucopolysaccharidosis type IVA (Morquio syndrome): a clinical review.  J Inherit Metab Dis. 1996;  19 (3) 357-365
  • 35 Dvorak-Ewell M, Wendt D, Hague C et al.. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice.  PLoS ONE. 2010;  5 (8) e12194
  • 36 Bashir A, Gray M L, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI.  Magn Reson Med. 1999;  41 (5) 857-865
  • 37 Burstein D, Gray M, Mosher T, Dardzinski B. Measures of molecular composition and structure in osteoarthritis.  Radiol Clin North Am. 2009;  47 (4) 675-686
  • 38 Gray M L, Burstein D, Kim Y J, Maroudas A. 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications.  J Orthop Res. 2008;  26 (3) 281-291
  • 39 Lohmander L S. Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease.  J Anat. 1994;  184 (Pt 3) 477-492
  • 40 Keshari K R, Lotz J C, Kurhanewicz J, Majumdar S. Correlation of HR-MAS spectroscopy derived metabolite concentrations with collagen and proteoglycan levels and Thompson grade in the degenerative disc.  Spine (Phila Pa 1976). 2005;  30 (23) 2683-2688
  • 41 Zuo J, Saadat E, Romero A et al.. Assessment of intervertebral disc degeneration with magnetic resonance single-voxel spectroscopy.  Magn Reson Med. 2009;  62 (5) 1140-1146
  • 42 Urban J P, McMullin J F. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration.  Spine (Phila Pa 1976). 1988;  13 (2) 179-187
  • 43 Antoniou J, Steffen T, Nelson F et al.. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration.  J Clin Invest. 1996;  98 (4) 996-1003

Mario MaasM.D. Ph.D. 

Department of Radiology, University of Amsterdam, Academic Medical Center

Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

Email: m.maas@amc.uva.nl

    >