Geburtshilfe Frauenheilkd 2010; 70(6): 488-493
DOI: 10.1055/s-0030-1249950
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Besteht ein Effekt des Immuntherapeutikums LeukoNorm® auf die Steigerung der Implantationsfähigkeit im humanen Endometrium?

Is There an Effect of LeukoNorm®, an Immune Therapeutic Agent, on the Improvement of the Implantation Capacity in the Human Endometrium?A. Germeyer1 , A. Senghaas1 , T. Strowitzki1 , M. von Wolff2
  • 1Abteilung gynäkologische Endokrinologie und Reproduktionsmedizin, Universitätsfrauenklinik Heidelberg, Heidelberg
  • 2Abteilung gynäkologische Endokrinologie und Reproduktionsmedizin, Universitätsfrauenklinik Bern, Bern, Schweiz
Weitere Informationen

Publikationsverlauf

eingereicht 10.3.2010

akzeptiert 19.4.2010

Publikationsdatum:
18. Juni 2010 (online)

Zusammenfassung

Einleitung: Selbst nach künstlicher Befruchtung betragen die Schwangerschaftsraten bei einem Transfer von 2 teilungsfähigen Embryonen maximal 30–50 %. Dies kann am ehesten mit einer eingeschränkten endometrialen Implantation erklärt werden. Ob eine Immuntherapie wie mit LeukoNorm® zu einer Veränderung der endometrialen Immunzellen und Funktionsmarker führen kann, soll deshalb auf molekularbiologischer Ebene eruiert werden. Methoden: Bei 17 Frauen mit rezidivierendem Implantationsversagen wurden LH-datierte endometriale Biopsien (LH+7/8) in 2 konsekutiven Zyklen einmal ohne und einmal direkt nach einer LeukoNorm®-Therapie gewonnen. Immunhistochemisch wurden endometriale Immunzellen, molekularbiologische Implantationsmarker, insbesondere Immunmodulatoren, Glukosetransporter und Adhäsionsfaktoren, die zum größten Teil bei Implantationsversagern als dysreguliert beschrieben wurden, mittels Multi-Probe RNAse Protection Assay untersucht. Ergebnisse: Immunhistochemisch zeigten die endometrialen CD45+- und CD56+-Immunzellen keine signifikanten Zellzahlunterschiede nach einer LeukoNorm®-Behandlung. Molekularbiologisch wiesen auch die untersuchten endometrialen Funktionsmarker keine signifikanten Unterschiede (p = 0,49) auf, bei jedoch deutlichem Variationskoeffizient von 0,84 (β3-Integrin), 0,33 (Osteopontin), 0,64 (GLUT1), 0,50 (GLUT3), 0,66 (LIF), 0,26 (TGFb-1), 0,61 (IL-1b) und 0,50 (M‐CSF). Diskussion: Durch die Behandlung mit LeukoNorm® konnte anhand der untersuchten Parameter kein direkter Effekt auf die endometriale Funktion nachgewiesen werden. Eine mögliche Beeinflussung anderer Parameter kann jedoch nicht sicher ausgeschlossen werden.

Abstract

Objective: Even with artificial reproduction techniques, the implantation rates are only around 30–50 % per transfer of two viable embryos. These low implantation rates are most likely due to impaired endometrial receptivity. We therefore examined the potential effects of the immune therapeutic agent LeukoNorm® at the molecular level, and investigated both immune cells and known implantation factors in endometrial tissue. Methods: LH (LH+7/8) dated biopsies were taken from 17 women with recurrent implantation failure prior to and after the systemic administration of LeukoNorm®. Endometrial immune cells were examined immunohistochemically and individual implantation markers, such as immunmodulators, glucose transporters and adhesion factors, all of which are known to be dysregulated in women with implantation failure, were examined by RNAse protection assay to detect RNA expression changes. Results: Immunohistochemical analysis of CD45+ and CD 56+ cells did not show significant changes in cell numbers after LeukoNorm® treatment. Furthermore, the RNA expression of the examined implantation factors also did not show significant changes, but analysis demonstrated large variation coefficients of 0.84 (β3-integrin), 0.33 (osteopontin), 0.64 (GLUT1), 0.5 (GLUT3), 0.66 (LIF), 0,26 (TGFb-1), 0.61 (IL-1b) and 0.5 (M-CSF). Conclusions: Looking at specific implanation markers, we were not able to demonstrate a direct impact on endometrial function by LeukoNorm® therapy. Nevertheless, a potential effect on other parameters cannot be excluded.

Literatur

  • 1 Boomsma C M, Keay S D, Macklon N S. Peri-implantation glucocorticoid administration for assisted reproductive technology cycles.  Cochrane Database Syst Rev. 2007;  CD005996
  • 2 Ubaldi F, Rienzi L, Ferrero S et al. Low dose prednisolone administration in routine ICSI patients does not improve pregnancy and implantation rates.  Hum Reprod. 2002;  17 1544-1547
  • 3 Kling C, Schmutzler A, Wilke G et al. Two-year outcome after recurrent implantation failure: prognostic factors and additional interventions.  Arch Gynecol Obstet. 2008;  278 135-142
  • 4 Stephenson M D, Fluker M R. Treatment of repeated unexplained in vitro fertilization failure with intravenous immunoglobulin: a randomized, placebo-controlled Canadian trial.  Fertil Steril. 2000;  74 1108-1113
  • 5 Daftary G S, Taylor H S. Reproductive tract gene transfer.  Fertil Steril. 2003;  80 475-484
  • 36 von Wolff M, Rösner S, Thone C et al. Intravaginal and intracervical application of seminal plasma in in vitro fertilization or intracytoplasmic sperm injection treatment cycles – a double blind, placebo-controlled, randomized pilot study.  Fertil Steril. 2009;  91 167-172
  • 37 Murray M J, Meyer W R, Zaino R J et al. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women.  Fertil Steril. 2004;  81 1333-1343
  • 6 von Wolff M, Thaler C J, Strowitzki T et al. Regulated expression of cytokines in human endometrium throughout the menstrual cycle: dysregulation in habitual abortion.  Mol Hum Reprod. 2000;  6 627-634
  • 7 Urman B, Balaban B. Is there still a place for co-cultures in the era of sequential media?.  Reprod Biomed Online. 2005;  10 492-496
  • 8 Boomsma C M, Macklon N S. Does glucocorticoid therapy in the peri-implantation period have an impact on IVF outcomes?.  Curr Opin Obstet Gynecol. 2008;  20 249-256
  • 9 Huntington N D, Vosshenrich C A, Di Santo J P. Developmental pathways that generate natural-killer-cell diversity in mice and humans.  Nat Rev Immunol. 2007;  7 703-714
  • 10 Kitaya K, Yamaguchi T, Yasuo T et al. Post-ovulatory rise of endometrial CD16(-) natural killer cells: in situ proliferation of residual cells or selective recruitment from circulating peripheral blood?.  J Reprod Immunol. 2007;  76 45-53
  • 11 Croy B A, He H, Esadeg S et al. Uterine natural killer cells: insights into their cellular and molecular biology from mouse modelling.  Reproduction. 2003;  126 149-160
  • 12 Lash G E, Schiessl B, Kirkley M et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy.  J Leukoc Biol. 2006;  80 572-580
  • 13 Hanna J, Goldman-Wohl D, Hamani Y et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface.  Nat Med. 2006;  12 1065-1074
  • 14 Germeyer A, Sharkey A M, Prasadajudio M et al. Paracrine effects of uterine leukocytes on gene expression of human uterine stromal fibroblasts.  Mol Hum Reprod. 2009;  15 39-48
  • 15 Quenby S, Nik H, Innes B et al. Uterine natural killer cells and angiogenesis in recurrent reproductive failure.  Hum Reprod. 2009;  24 45-54
  • 16 von Wolff M, Ursel S, Hahn U et al. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy.  J Clin Endocrinol Metab. 2003;  88 3885-3892
  • 17 Raghupathy R. Pregnancy: success and failure within the Th1/Th2/Th3 paradigm.  Semin Immunol. 2001;  13 219-227
  • 18 Shen L, Smith J M, Shen Z et al. Inhibition of human neutrophil degranulation by transforming growth factor-beta1.  Clin Exp Immunol. 2007;  149 155-161
  • 19 Stoikos C J, Harrison C A, Salamonsen L A et al. A distinct cohort of the TGFbeta superfamily members expressed in human endometrium regulate decidualization.  Hum Reprod. 2008;  23 1447-1456
  • 20 Fornari M C, Sarto A, Berardi V E et al. Effect of ovaric hyper-stimulation on blood lymphocyte subpopulations, cytokines, leptin and nitrite among patients with unexplained infertility.  Am J Reprod Immunol. 2002;  48 394-403
  • 21 Sherwin J R, Freeman T C, Stephens R J et al. Identification of genes regulated by leukemia-inhibitory factor in the mouse uterus at the time of implantation.  Mol Endocrinol. 2004;  18 2185-2195
  • 22 Laird S M, Tuckerman E M, Dalton C F et al. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture.  Hum Reprod. 1997;  12 569-574
  • 23 Dimitriadis E, Sharkey A M, Tan Y L et al. Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window.  Reprod Biol Endocrinol. 2007;  5 44
  • 24 Tabibzadeh S, Sun X Z. Cytokine expression in human endometrium throughout the menstrual cycle.  Hum Reprod. 1992;  7 1214-1221
  • 25 Rossi M, Sharkey A M, Vigano P et al. Identification of genes regulated by interleukin-1beta in human endometrial stromal cells.  Reproduction. 2005;  130 721-729
  • 26 Karmakar S, Das C. Regulation of trophoblast invasion by IL-1beta and TGF-beta1.  Am J Reprod Immunol. 2002;  48 210-219
  • 27 Inagaki N, Stern C, McBain J et al. Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer.  Hum Reprod. 2003;  18 608-615
  • 28 Seymour J F. Extra-pulmonary aspects of acquired pulmonary alveolar proteinosis as predicted by granulocyte-macrophage colony-stimulating factor-deficient mice.  Respirology. 2006;  11 (Suppl.) S16-S22
  • 29 Arcuri F, Buchwalder L, Toti P et al. Differential regulation of colony stimulating factor 1 and macrophage migration inhibitory factor expression by inflammatory cytokines in term human decidua: implications for macrophage trafficking at the fetal-maternal interface.  Biol Reprod. 2007;  76 433-439
  • 30 Harty J R, Kauma S W. Interleukin-1 beta stimulates colony-stimulating factor-1 production in placental villous core mesenchymal cells.  J Clin Endocrinol Metab. 1992;  75 947-950
  • 31 Lessey B A, Castelbaum A J, Sawin S W et al. Integrins as markers of uterine receptivity in women with primary unexplained infertility.  Fertil Steril. 1995;  63 535-542
  • 32 Merviel P, Challier J C, Carbillon L et al. The role of integrins in human embryo implantation.  Fetal Diagn Ther. 2001;  16 364-371
  • 33 Boroujerdnia M G, Nikbakht R. Beta3 integrin expression within uterine endometrium and its relationship with unexplained infertility.  Pak J Biol Sci. 2008;  11 2495-2499
  • 34 Casals G, Ordi J, Creus M et al. Osteopontin and alphavbeta3 integrin expression in the endometrium of infertile and fertile women.  Reprod Biomed Online. 2008;  16 808-816
  • 35 von Wolff M, Strowitzki T, Becker V et al. Endometrial osteopontin, a ligand of beta3-integrin, is maximally expressed around the time of the “implantation window”.  Fertil Steril. 2001;  76 775-781

Dr. Ariane Germeyer

Gyn. Endokrinologie und Reproduktionsmedizin

Voßstraße 9

69115 Heidelberg

eMail: ariane.germeyer@med.uni-heidelberg.de

    >