Minim Invasive Neurosurg 2009; 52(5/06): 216-221
DOI: 10.1055/s-0029-1243244
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Risk Factors for Regrowth of Intracranial Meningiomas after Gamma Knife Radiosurgery: Importance of the Histopathological Grade and MIB-1 Index

K. Nakaya1 , M. Chernov1 , 3 , 4 , H. Kasuya1 , 2 , 4 , M. Izawa1 , M. Hayashi1 , 3 , K. Kato1 , O. Kubo1 , Y. Muragaki1 , 3 , H. Iseki1 , 3 , 4 , T. Hori1 , Y. Okada1 , K. Takakura1 , 3 , 4
  • 1Department of Neurosurgery, Neurological Institute, Tokyo Women’s Medical University, Tokyo, Japan
  • 2Department of Neurosurgery, Medical Center East, Tokyo Women’s Medical University, Tokyo, Japan
  • 3Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
  • 4International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
Further Information

Publication History

Publication Date:
14 January 2010 (online)

Abstract

Introduction: The influence of histopathological grade and MIB-1 index of intracranial meningioma on the results of its radiosurgical management is not clear. The objective of the present retrospective study was to make an evaluation of these factors along with an analysis of other variables associated with progression-free survival after gamma knife radiosurgery (GKR).

Patients and Methods: Thirty-four intracranial meningiomas with known detailed histopathological diagnosis were analyzed. Tumors of WHO histopathological grades I, II, and III were diagnosed in 24, 3, and 7 cases, respectively. The median MIB-1 index was 1.3% (range: 0–31.9%). In 14 cases the MIB-1 index was 3.0% and more. In 26 cases the treatment was done at the time of tumor recurrence. Median volume of the neoplasm at the time of GKR was 4.1 mL (range: 0.4–43.1 mL). Median marginal dose was 12 Gy (range: 8–19 Gy). Median length of follow-up constituted 63 months (range: 19–132 months).

Results: Actuarial progression-free survival at 1, 3, 5, and 10 years constituted 100, 94, 83, and 58%, respectively. Histopathological grade II or III (p<0.0001), MIB-1 index 3% and more (p=0.0004), and non-skull base location (p=0.0026) of the tumor showed negative associations with progression-free survival in multivariate analyses. Actuarial progression-free survival at 5 years after GKR for benign and non-benign meningiomas constituted 100 and 45%, respectively (p<0.0001).

Conclusion: Radiosurgery is a highly effective management option for benign intracranial meningiomas, but growth control of non-benign ones is significantly worse. It requires close neuroradiological follow-up and necessitates the search for modified treatment strategies.

References

  • 1 Kondziolka D, Levy EI, Niranjan A. et al . Long-term outcomes after meningioma radiosurgery: physician and patient perspectives.  J Neurosurg. 1999;  91 44-50
  • 2 Nakaya K, Hayashi M, Nakamura S. et al . Low-dose radiosurgery for meningiomas.  Stereotact Funct Neurosurg. 1999;  72 ((Suppl 1)) 67-72
  • 3 Stafford SL, Pollock BE, Foote RL. et al . Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients.  Neurosurgery. 2001;  49 1029-1038
  • 4 Flickinger JC, Kondziolka D, Maitz AH. et al . Gamma knife radiosurgery of imaging-diagnosed intracranial meningioma.  Int J Radiat Oncol Biol Phys. 2003;  56 801-806
  • 5 Pollock BE, Stafford SL, Utter A. et al . Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small- to medium-size meningiomas.  Int J Radiat Oncol Biol Phys. 2003;  55 1000-1005
  • 6 DiBiase SJ, Kwok Y, Yovino S. et al . Factors predicting local tumor control after gamma knife stereotactic radiosurgery for benign intracranial meningiomas.  Int J Radiat Oncol Biol Phys. 2004;  60 1515-1519
  • 7 Kollova A, Liscak R, Novotny Jr J. et al . Gamma knife surgery for benign meningiomas.  J Neurosurg. 2007;  107 325-336
  • 8 Iwai Y, Yamanaka K, Ikeda H. Gamma knife radiosurgery for skull base meningioma: long-term results of low-dose treatment.  J Neurosurg. 2008;  109 804-810
  • 9 Ojemann SG, Sneed PK, Larson DA. et al . Radiosurgery for malignant meningioma: results in 22 patients.  J Neurosurg. 2000;  93 ((Suppl 3)) 62-67
  • 10 Kawashima M, Suzuki SO, Ikezaki K. et al . Different responses of benign and atypical meningiomas to gamma-knife radiosurgery: report of two cases with immunohistochemical analysis.  Brain Tumor Pathol. 2001;  18 61-66
  • 11 Harris AE, Lee JY, Omalu B. et al . The effect of radiosurgery during management of aggressive meningiomas.  Surg Neurol. 2003;  60 298-305
  • 12 Huffmann BC, Reinacher PC, Gilsbach JM. Gamma knife surgery for atypical meningiomas.  J Neurosurg. 2005;  102 ((Suppl)) 283-286
  • 13 Kano H, Takahashi JA, Katsuki T. et al . Stereotactic radiosurgery for atypical and anaplastic meningiomas.  J Neurooncol. 2007;  84 41-47
  • 14 Mattozo CA, De Salles AAF, Klement IA. et al . Stereotactic radiation treatment for recurrent nonbenign meningiomas.  J Neurosurg. 2007;  106 846-854
  • 15 Louis DN, Scheithauer BW, Budka H. et al .In: Kleihues P, Cavenee WK, eds. Pathology and genetics of tumours of the Nervous System. Lyon: IARC Press 2000: 176-184
  • 16 Kasuya H, Kubo O, Tanaka M. et al . Clinical and radiological features related to the growth potential of meningioma.  Neurosurg Rev. 2006;  29 293-297
  • 17 Quinones-Hinojosa A, Sanai N, Smith JS. et al . Techniques to access the proliferative potential of brain tumors.  J Neurooncol. 2005;  74 19-30
  • 18 Matsuno A, Fujimaki T, Sasaki T. et al . Clinical and histopathological analysis of proliferative potentials of recurrent and non-recurrent meningiomas.  Acta Neuropathol (Berl). 1996;  91 504-510
  • 19 Takeuchi H, Kubota T, Kabuto M. et al . Prediction of recurrence in histologically benign meningiomas: proliferating cell nuclear antigen and Ki-67 immunohistochemical study.  Surg Neurol. 1997;  48 501-506
  • 20 Perry A, Stafford SL, Scheithauer BW. et al . The prognostic significance of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas.  Cancer. 1998;  82 2262-2269
  • 21 Nakaguchi H, Fujimaki T, Matsuno A. et al . Postoperative residual tumor growth of meningioma can be predicted by MIB-1 immunohistochemistry.  Cancer. 1999;  85 2249-2254
  • 22 Yamamoto M, Ide M, Umebara Y. et al . Gamma knife radiosurgery for brain tumors: postirradiation volume changes compared with preradiosurgical growth fractions.  Neurol Med Chir (Tokyo). 1996;  36 358-363
  • 23 Matsuno A, Nagashima T. Proliferation index and prophylactic radiosurgery (Letter to the Editor).  J Neurosurg. 1999;  91 898
  • 24 Kubo O, Chernov M, Izawa M. et al . Malignant progression of benign brain tumors after gamma knife radiosurgery: is it really caused by irradiation?.  Minim Invasive Neurosurg. 2005;  48 334-339
  • 25 Katz TS, Amdur RJ, Yachnis AT. et al . Pushing the limits of radiotherapy for atypical and malignant meningioma.  Am J Clin Oncol. 2005;  28 70-74
  • 26 Modha A, Gutin PH. Diagnosis and treatment of atypical and anaplastic meningiomas: a review.  Neurosurgery. 2005;  57 538-550
  • 27 Nakasu S, Nakasu Y, Nakajima M. et al . Preoperative identification of meningiomas that are highly likely to recur.  J Neurosurg. 1999;  90 455-462
  • 28 Nakamura M, Roser F, Michel J. et al . Volumetric analysis of the growth rate of incompletely resected intracranial meningiomas.  Zentrabl Neurochir. 2005;  66 17-23
  • 29 Jaaskelainen J, Haltia M, Laasonen E. et al . The growth rate of intracranial meningiomas and its relation to histology: an analysis of 43 patients.  Surg Neurol. 1985;  24 165-172

Correspondence

K. NakayaMD, D.Med.Sci 

Department of Neurosurgery Neurological Institute

Tokyo Women’s Medical University

8-1 Kawada-cho

162-8666 Shinjuku-ku

Tokyo

Japan

Phone: +81/3/3353 8111 (ext. 26216)

Fax: +81/3/5269 7438

Email: knakaya@nij.twmu.ac.jp

    >