Semin Neurol 2008; 28(4): 423-434
DOI: 10.1055/s-0028-1083683
© Thieme Medical Publishers

Brain Single Photon Emission Computed Tomography: Technological Aspects and Clinical Applications

Joseph C. Masdeu1 , Javier Arbizu2
  • 1Department of Neurology and Neurosurgery, Clínica Universitaria de Navarra, University of Navarra Medical School, and the Center for Applied Medical Research, Pamplona, Spain
  • 2Department of Nuclear Medicine, Clínica Universitaria de Navarra, University of Navarra Medical School, and the Center for Applied Medical Research, Pamplona, Spain
Further Information

Publication History

Publication Date:
08 October 2008 (online)

ABSTRACT

Single photon emission computed tomography (SPECT) is obtained by the injection of one of a series of compounds that cross the blood-brain barrier and are distributed in the brain according to regional perfusion or to the density of a given receptor. The regional brain distribution of the injected compound can be measured because it is bound to a radioactive substance that emits photons. Emitted photons are collimated to facilitate determining their source and detected with sodium iodine crystal detectors. Finally, the techniques of CT are used to reconstruct the density of photons emitted by each volume element (voxel) of the brain. Less expensive and more widely distributed in nuclear medicine departments than positron emission tomography, SPECT is currently used mainly in the evaluation for epilepsy surgery, of cerebrovascular disease, and of the parkinsonian and other neurodegenerative syndromes. In this article, we discuss the technological aspects of brain SPECT and its clinical neurological applications.

REFERENCES

  • 1 Catafau A M. Brain SPECT in clinical practice. Part I: perfusion.  J Nucl Med. 2001;  42 259-271
  • 2 Devous M D. Single-photon emission computed tomography in neurotherapeutics.  NeuroRx. 2005;  2 237-249
  • 3 Vastenhouw B, Beekman F. Submillimeter total-body murine imaging with U-SPECT-I.  J Nucl Med. 2007;  48 487-493
  • 4 Wintermark M, Sesay M, Barbier E et al.. Comparative overview of brain perfusion imaging techniques.  J Neuroradiol. 2005;  32 294-314
  • 5 Seibyl J, Jennings D, Tabamo R, Marek K. Unique roles of SPECT brain imaging in clinical and research studies. Lessons from Parkinson's disease research.  Q J Nucl Med Mol Imaging. 2005;  49 215-221
  • 6 Catafau A M, Tolosa E. Impact of dopamine transporter SPECT using 123I-Ioflupane on diagnosis and management of patients with clinically uncertain Parkinsonian syndromes.  Mov Disord. 2004;  19 1175-1182
  • 7 Masdeu J C. Imaging of stroke with SPECT. In: Babikian V, Wechsler L, Higashida RT Imaging Cerebrovascular Disease. Boston, MA; Butterworth-Heinemann 2003: 131-144
  • 8 Aminian A, Strashun A, Rose A. Alternating hemiplegia of childhood: studies of regional cerebral blood flow using 99mTc-hexamethylpropylene amine oxime single-photon emission computed tomography.  Ann Neurol. 1993;  33 43-47
  • 9 Lewis D H, Longstreth Jr W, Wilkus R, Copass M. Hyperemic receptive aphasia on neuroSPECT.  Clin Nucl Med. 1993;  18 409-412
  • 10 Matsumoto K, Awata S, Matsuoka H, Nakamura S, Sato M. Chronological changes in brain MRI, SPECT, and EEG in neurosarcoidosis with stroke-like episodes.  Psychiatry Clin Neurosci. 1998;  52 629-633
  • 11 Berrouschot J, Barthel H, Hesse S, Koster J, Knapp W H, Schneider D. Differentiation between transient ischemic attack and ischemic stroke within the first six hours after onset of symptoms by using 99mTc-ECD-SPECT.  J Cereb Blood Flow Metab. 1998;  18 921-929
  • 12 Laloux P, Jamart J, Meurisse H, De-Coster P, Laterre C. Persisting perfusion defect in transient ischemic attacks: a new clinically useful subgroup?.  Stroke. 1996;  27 425-430
  • 13 Nuutinen J, Kuikka J, Roivainen R, Vanninen E, Sivenius J. Early serial SPECT in acute middle cerebral artery infarction.  Nucl Med Commun. 2000;  21 425-429
  • 14 Barthel H, Hesse S, Dannenberg C et al.. Prospective value of perfusion and x-ray attenuation imaging with single-photon emission and transmission computed tomography in acute cerebral ischemia.  Stroke. 2001;  32 1588-1597
  • 15 Mahagne M H, Darcourt J, Migneco O et al.. Early (99m)Tc-ethylcysteinate dimer brain SPECT patterns in the acute phase of stroke as predictors of neurological recovery.  Cerebrovasc Dis. 2000;  10 364-373
  • 16 Baird A E, Austin M C, McKay W J, Donnan G A. Sensitivity and specificity of 99mTc-HMPAO SPECT cerebral perfusion measurements during the first 48 hours for the localization of cerebral infarction.  Stroke. 1997;  28 976-980
  • 17 Brass L M, Walovitch R C, Joseph J L et al.. The role of single photon emission computed tomography brain imaging with 99mTc-bicisate in the localization and definition of mechanism of ischemic stroke.  J Cereb Blood Flow Metab. 1994;  14 S91-S98
  • 18 Berrouschot J, Barthel H, von Kummer R, Knapp W H, Hesse S, Schneider D. 99m technetium-ethyl-cysteinate-dimer single-photon emission CT can predict fatal ischemic brain edema.  Stroke. 1998;  29 2556-2562
  • 19 Alexandrov A V, Black S E, Ehrlich L E et al.. Simple visual analysis of brain perfusion on HMPAO SPECT predicts early outcome in acute stroke.  Stroke. 1996;  27 1537-1542
  • 20 Hirano T, Read S J, Abbott D F et al.. Prediction of the final infarct volume within 6 h of stroke using single photon emission computed tomography with technetium-99m hexamethylpropylene amine oxime.  Cerebrovasc Dis. 2001;  11 119-127
  • 21 Alexandrov A V, Masdeu J C, Devous Sr M, Black S E, Grotta J C. Brain single-photon emission CT with HMPAO and safety of thrombolytic therapy in acute ischemic stroke. Proceedings of the meeting of the SPECT Safe Thrombolysis Study Collaborators and the members of the Brain Imaging Council of the Society of Nuclear Medicine.  Stroke. 1997;  28 1830-1834
  • 22 Baron J C. Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications.  Cerebrovasc Dis. 2001;  11 2-8
  • 23 Karonen J O, Vanninen R L, Liu Y et al.. Combined diffusion and perfusion MRI with correlation to single-photon emission CT in acute ischemic stroke. Ischemic penumbra predicts infarct growth.  Stroke. 1999;  30 1583-1590
  • 24 Liu Y, Karonen J O, Vanninen R L et al.. Cerebral hemodynamics in human acute ischemic stroke: a study with diffusion- and perfusion-weighted magnetic resonance imaging and SPECT.  J Cereb Blood Flow Metab. 2000;  20 910-920
  • 25 Heiss W D. Ischemic penumbra: evidence from functional imaging in man.  J Cereb Blood Flow Metab. 2000;  20 1276-1293
  • 26 Ogasawara K, Ogawa A, Ezura M et al.. Dynamic and static 99mTc-ECD SPECT imaging of subacute cerebral infarction: comparison with 133Xe SPECT.  J Nucl Med. 2001;  42 543-547
  • 27 Ogasawara K, Ogawa A, Ezura M, Konno H, Suzuki M, Yoshimoto T. Brain single-photon emission CT studies using 99mTc-HMPAO and 99mTc-ECD early after recanalization by local intraarterial thrombolysis in patients with acute embolic middle cerebral artery occlusion.  AJNR Am J Neuroradiol. 2001;  22 48-53
  • 28 Ryu Y H, Chung T S, Yoon P H et al.. Evaluation of reperfusion and recovery of brain function before and after intracarotid arterial urokinase therapy in acute cerebral infarction with brain SPECT.  Clin Nucl Med. 1999;  24 566-571
  • 29 Ueda T, Sakaki S, Yuh W T, Nochide I, Ohta S. Outcome in acute stroke with successful intra-arterial thrombolysis and predictive value of initial single-photon emission-computed tomography.  J Cereb Blood Flow Metab. 1999;  19 99-108
  • 30 Sasaki O, Takeuchi S, Koizumi T, Koike T, Tanaka R. Complete recanalization via fibrinolytic therapy can reduce the number of ischemic territories that progress to infarction.  AJNR Am J Neuroradiol. 1996;  17 1661-1668
  • 31 Grotta J C, Alexandrov A V. tPA-associated reperfusion after acute stroke demonstrated by SPECT.  Stroke. 1998;  29 429-432
  • 32 Berrouschot J, Barthel H, Hesse S, Knapp W H, Schneider D, von Kummer R. Reperfusion and metabolic recovery of brain tissue and clinical outcome after ischemic stroke and thrombolytic therapy.  Stroke. 2000;  31 1545-1551
  • 33 Nakano S, Iseda T, Ikeda T, Yoneyama T, Wakisaka S. Thresholds of ischemia salvageable with intravenous tissue plasminogen activator therapy: evaluation with cerebral blood flow single-photon emission computed tomographic measurements.  Neurosurgery. 2000;  47 68-71 discussion 71-63
  • 34 Umemura A, Suzuka T, Yamada K. Quantitative measurement of cerebral blood flow by (99m)Tc-HMPAO SPECT in acute ischaemic stroke: usefulness in determining therapeutic options.  J Neurol Neurosurg Psychiatry. 2000;  69 472-478
  • 35 Yasaka M, O'Keefe G J, Chambers B R et al.. Streptokinase in acute stroke: effect on reperfusion and recanalization. Australian Streptokinase Trial Study Group.  Neurology. 1998;  50 626-632
  • 36 Rossler A, Berrouschot J, Barthel H, Hesse S, Koster J, Schneider D. Potential of rheopheresis for the treatment of acute ischemic stroke when initiated between 6 and 12 hours.  Ther Apher. 2000;  4 358-362
  • 37 Berrouschot J, Barthel H, Koster J et al.. Extracorporeal rheopheresis in the treatment of acute ischemic stroke: a randomized pilot study.  Stroke. 1999;  30 787-792
  • 38 Kita T, Hayashi K, Yamamoto M et al.. Does supplementation of contrast MR imaging with thallium-201 brain SPECT improve differentiation between benign and malignant ring-like contrast-enhanced cerebral lesions?.  Ann Nucl Med. 2007;  21 251-256
  • 39 Vallejos V, Balana C, Fraile M et al.. Use of 201Tl SPECT imaging to assess the response to therapy in patients with high grade gliomas.  J Neurooncol. 2002;  59 81-90
  • 40 Plotkin M, Amthauer H, Eisenacher J et al.. Value of 123I-IMT SPECT for diagnosis of recurrent non-astrocytic intracranial tumours.  Neuroradiology. 2005;  47 18-26
  • 41 Tucker K A, Robertson K R, Lin W et al.. Neuroimaging in human immunodeficiency virus infection.  J Neuroimmunol. 2004;  157 153-162
  • 42 Masdeu J C, Van Heertum R L, Abdel-Dayem H. Viral infections of the brain.  J Neuroimaging. 1995;  5(suppl 1) S40-S44
  • 43 O'Malley J P, Ziessman H A, Kumar P N, Harkness B A, Tall J G, Pierce P F. Diagnosis of intracranial lymphoma in patients with AIDS: value of 201TI single-photon emission computed tomography.  AJR Am J Roentgenol. 1994;  163 417-421
  • 44 Ruiz A, Ganz W I, Post M J et al.. Use of thallium-201 brain SPECT to differentiate cerebral lymphoma from toxoplasma encephalitis in AIDS patients.  AJNR Am J Neuroradiol. 1994;  15 1885-1894
  • 45 Giancola M L, Rizzi E B, Schiavo R et al.. Reduced value of thallium-201 single-photon emission computed tomography in the management of HIV-related focal brain lesions in the era of highly active antiretroviral therapy.  AIDS Res Hum Retroviruses. 2004;  20 584-588
  • 46 Licho R, Litofsky N S, Senitko M, George M. Inaccuracy of Tl-201 brain SPECT in distinguishing cerebral infections from lymphoma in patients with AIDS.  Clin Nucl Med. 2002;  27 81-86
  • 47 Kim D G, Lee J I, Lee D S, Lee M C, Choi K S, Han D H. 99mTc-HMPAO labeled leukocyte SPECT in intracranial lesions.  Surg Neurol. 1995;  44 338-345
  • 48 Masdeu J C, Abdel-Dayem H, Van Heertum R L. Head trauma: use of SPECT.  J Neuroimaging. 1995;  5(suppl 1) S53-S57
  • 49 Lee B, Newberg A. Neuroimaging in traumatic brain imaging.  NeuroRx. 2005;  2 372-383
  • 50 Cascino G D, So E L, Buchhalter J R, Mullan B P. The current place of single photon emission computed tomography in epilepsy evaluations.  Neuroimaging Clin N Am. 2004;  14 553-561
  • 51 Ho S S, Berkovic S F, Berlangieri S U et al.. Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy.  Ann Neurol. 1995;  37 738-745
  • 52 Masdeu J C, Zubieta J L, Arbizu J. Neuroimaging as a marker of the onset and progression of Alzheimer's disease.  J Neurol Sci. 2005;  236 55-64
  • 53 Johnson K A, Jones K, Holman B L et al.. Preclinical prediction of Alzheimer's disease using SPECT.  Neurology. 1998;  50 1563-1571
  • 54 Jagust W, Thisted R, Devous Sr M D et al.. SPECT perfusion imaging in the diagnosis of Alzheimer's disease: a clinical-pathologic study.  Neurology. 2001;  56 950-956
  • 55 Johnson K A, Lopera F, Jones K et al.. Presenilin-1-associated abnormalities in regional cerebral perfusion.  Neurology. 2001;  56 1545-1551
  • 56 Walker Z, Costa D C, Walker R W et al.. Differentiation of dementia with Lewy bodies from Alzheimer's disease using a dopaminergic presynaptic ligand.  J Neurol Neurosurg Psychiatry. 2002;  73 134-140
  • 57 O'Brien J T, Colloby S, Fenwick J et al.. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies.  Arch Neurol. 2004;  61 919-925
  • 58 Ravina B, Eidelberg D, Ahlskog J E et al.. The role of radiotracer imaging in Parkinson disease.  Neurology. 2005;  64 208-215
  • 59 Brooks D J. PET and SPECT in CNS drug development.  NeuroRx. 2005;  2 226-236
  • 60 Masdeu J C, Bakshi R. Neuroimaging: anything to do with neurotherapeutics?.  NeuroRx. 2005;  2 163-166
  • 61 Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders.  NeuroRx. 2005;  2 361-371
  • 62 Facco E, Zucchetta P, Munari M et al.. 99mTc-HMPAO SPECT in the diagnosis of brain death.  Intensive Care Med. 1998;  24 911-917

Joseph C MasdeuM.D. Ph.D. 

Neurosciences, CUN, University of Navarre

Pamplona, Spain

Email: masdeu@unav.es

    >