Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000031.xml
Klin Monbl Augenheilkd 2024; 241(06): 713-721
DOI: 10.1055/a-2307-0313
DOI: 10.1055/a-2307-0313
Übersicht
Objective Analysis of Corneal Nerves and Dendritic Cells
Article in several languages: English | deutschAuthors

Abstract
Corneal nerves and dendritic cells are increasingly being visualised to serve as clinical parameters in the diagnosis of ocular surface diseases using intravital confocal microscopy. In this review, different methods of image analysis are presented. The use of deep learning algorithms, which enable automated pattern recognition, is explained in detail using our own developments and compared with other established methods.
Publication History
Received: 29 February 2024
Accepted: 17 March 2024
Article published online:
28 June 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1
Lemp MA,
Dilly PN,
Boyde A.
Tandem-scanning (confocal) microscopy of the full-thickness cornea. Cornea 1985; 4:
205-209
Reference Ris Wihthout Link
- 2
Cavanagh HD,
Jester JV,
Essepian J.
et al.
Confocal microscopy of the living eye. CLAO J 1990; 16: 65-73
Reference Ris Wihthout Link
- 3
Jester JV,
Andrews PM,
Petroll WM.
et al.
In vivo, real-time confocal imaging. J Electron Microsc Tech 1991; 18: 50-60
Reference Ris Wihthout Link
- 4
Bailly N,
Sherif ZA,
Pleyer U.
et al.
[Confocal microscopy in corneal dystrophies: a comparison between confocal slit scanning
(ConfoScan P2) and laser scanning microscopy (Rostock Cornea Modul-HRT II)]. Klin
Monbl Augenheilkd 2006; 223: 735-742
Reference Ris Wihthout Link
- 5
Stave J,
Slowik C,
Somodi S.
et al.
[Keratinocyte density of the cornea in vivo. Automated measurement with a modified
confocal microscopy MICROPHTHAL]. Klin Monbl Augenheilkd 1998; 213: 38-44
Reference Ris Wihthout Link
- 6
Stave J,
Guthoff R.
[Imaging the tear film and in vivo cornea. Initial results with a modified confocal
laser scanning ophthalmoscope]. Ophthalmologe 1998; 95: 104-109
Reference Ris Wihthout Link
- 7
Stave J,
Zinser G,
Grummer G.
et al.
[Modified Heidelberg Retinal Tomograph HRT. Initial results of in vivo presentation
of corneal structures]. Ophthalmologe 2002; 99: 276-280
Reference Ris Wihthout Link
- 8
Labbe A,
Khammari C,
Dupas B.
et al.
Contribution of in vivo confocal microscopy to the diagnosis and management of infectious
keratitis. Ocul Surf 2009; 7: 41-52
Reference Ris Wihthout Link
- 9
Schlemm T.
Nerven der Cornea. Ammon. Z Ophthalmol 1831; (01) 113-114
Reference Ris Wihthout Link
- 10
Auran JD,
Koester CJ,
Kleiman NJ.
et al.
Scanning slit confocal microscopic observation of cell morphology and movement within
the normal human anterior cornea. Ophthalmology 1995; 102: 33-41
Reference Ris Wihthout Link
- 11
Shaheen BS,
Bakir M,
Jain S.
Corneal nerves in health and disease. Surv Ophthalmol 2014; 59: 263-285
Reference Ris Wihthout Link
- 12
Liu J,
Li Z.
Resident Innate Immune Cells in the Cornea. Front Immunol 2021; 12: 620284
Reference Ris Wihthout Link
- 13
Matsumoto Y,
Ibrahim OMA.
Application of In Vivo Confocal Microscopy in Dry Eye Disease. Invest Ophthalmol Vis
Sci 2018; 59: DES41-DES47
Reference Ris Wihthout Link
- 14
Uchino Y,
Uchino M,
Mizuno M.
et al.
Morphological alterations in corneal nerves of patients with dry eye and associated
biomarkers. Exp Eye Res 2023; 230: 109438
Reference Ris Wihthout Link
- 15
Cox SM,
Kheirkhah A,
Aggarwal S.
et al.
Alterations in corneal nerves in different subtypes of dry eye disease: An in vivo
confocal microscopy study. Ocul Surf 2021; 22: 135-142
Reference Ris Wihthout Link
- 16
Bucher F,
Hos D,
Matthaei M.
et al.
Corneal nerve alterations after Descemet membrane endothelial keratoplasty: an in
vivo confocal microscopy study. Cornea 2014; 33: 1134-1139
Reference Ris Wihthout Link
- 17
Liu YC,
Jung ASJ,
Chin JY.
et al.
Cross-sectional Study on Corneal Denervation in Contralateral Eyes Following SMILE
Versus LASIK. J Refract Surg 2020; 36: 653-660
Reference Ris Wihthout Link
- 18
Li M,
Wei R,
Yang W.
et al.
Femtosecond Laser-Assisted Allogenic Lenticule Implantation for Corneal Ectasia After
LASIK: A 3-Year In Vivo Confocal Microscopic Investigation. J Refract Surg 2020; 36:
714-722
Reference Ris Wihthout Link
- 19
Chao C,
Zhou S,
Stapleton F.
et al.
The structural and functional corneal reinnervation mechanism at different regions
after LASIK-an in vivo confocal microscopy study. Graefes Arch Clin Exp Ophthalmol
2022; 260: 163-172
Reference Ris Wihthout Link
- 20
Serramito-Blanco M,
Canadas P,
Villa-Collar C.
et al.
Corneal Confocal Analysis after Scleral Lens Wear in Keratoconus Patients: A Pilot
Study. Optom Vis Sci 2022; 99: 800-806
Reference Ris Wihthout Link
- 21
Patel SV,
McLaren JW,
Hodge DO.
et al.
Confocal microscopy in vivo in corneas of long-term contact lens wearers. Invest Ophthalmol
Vis Sci 2002; 43: 995-1003
Reference Ris Wihthout Link
- 22
Leonardi A,
Feuerman OM,
Salami E.
et al.
Coexistence of neuropathic corneal pain, corneal nerve abnormalities, depression,
and low quality of life. Eye (Lond) 2024; 38: 499-506
Reference Ris Wihthout Link
- 23
Kalteniece A,
Ferdousi M,
Azmi S.
et al.
Corneal nerve loss is related to the severity of painful diabetic neuropathy. Eur
J Neurol 2022; 29: 286-294
Reference Ris Wihthout Link
- 24
Badian RA,
Ekman L,
Pripp AH.
et al.
Comparison of Novel Wide-Field In Vivo Corneal Confocal Microscopy With Skin Biopsy
for Assessing Peripheral Neuropathy in Type 2 Diabetes. Diabetes 2023; 72: 908-917
Reference Ris Wihthout Link
- 25
Keskiner-Ozturk E,
Akkaya-Turhan S,
Toker E.
et al.
Corneal nerve fiber involvement in chronic inflammatory demyelinating polyneuropathy.
Neurol Sci 2023; 44: 2509-2516
Reference Ris Wihthout Link
- 26
Roszkowska AM,
Wylegala A,
Gargiulo L.
et al.
Corneal Sub-Basal Nerve Plexus in Non-Diabetic Small Fiber Polyneuropathies and the
Diagnostic Role of In Vivo Corneal Confocal Microscopy. J Clin Med 2023; 12: 664
Reference Ris Wihthout Link
- 27
Guldiken YC,
Petropoulos IN,
Malik A.
et al.
Corneal confocal microscopy identifies corneal nerve fiber loss in patients with migraine.
Cephalalgia 2023; 43: 3331024231170810
Reference Ris Wihthout Link
- 28
Petropoulos IN,
Bitirgen G,
Ferdousi M.
et al.
Corneal Confocal Microscopy to Image Small Nerve Fiber Degeneration: Ophthalmology
Meets Neurology. Front Pain Res (Lausanne) 2021; 2: 725363
Reference Ris Wihthout Link
- 29
Oudejans LC,
Niesters M,
Brines M.
et al.
Quantification of small fiber pathology in patients with sarcoidosis and chronic pain
using cornea confocal microscopy and skin biopsies. J Pain Res 2017; 10: 2057-2065
Reference Ris Wihthout Link
- 30
Moein HR,
Akhlaq A,
Dieckmann G.
et al.
Visualization of microneuromas by using in vivo confocal microscopy: An objective
biomarker for the diagnosis of neuropathic corneal pain?. Ocul Surf 2020; 18: 651-656
Reference Ris Wihthout Link
- 31
Villani E,
Galimberti D,
Viola F.
et al.
Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol
Vis Sci 2008; 49: 560-564
Reference Ris Wihthout Link
- 32
Chiang JCB,
Goldstein D,
Tavakoli A.
et al.
Corneal dendritic cells and the subbasal nerve plexus following neurotoxic treatment
with oxaliplatin or paclitaxel. Sci Rep 2021; 11: 22884
Reference Ris Wihthout Link
- 33
Akhlaq A,
Colon C,
Cavalcanti BM.
et al.
Density and distribution of dendritiform cells in the peripheral cornea of healthy
subjects using in vivo confocal microscopy. Ocul Surf 2022; 26: 157-165
Reference Ris Wihthout Link
- 34
Cruzat A,
Qazi Y,
Hamrah P.
In Vivo Confocal Microscopy of Corneal Nerves in Health and Disease. Ocul Surf 2017;
15: 15-47
Reference Ris Wihthout Link
- 35
Patel DV,
McGhee CN.
In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic
disease, and following corneal surgery: a review. Br J Ophthalmol 2009; 93: 853-860
Reference Ris Wihthout Link
- 36
Dabbah MA,
Graham J,
Petropoulos IN.
et al.
Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative
morphology of nerve fibres in corneal confocal microscopy imaging. Med Image Anal
2011; 15: 738-747
Reference Ris Wihthout Link
- 37
Chen X,
Graham J,
Dabbah MA.
et al.
An automatic tool for quantification of nerve fibers in corneal confocal microscopy
images. IEEE Trans Biomed Eng 2017; 64: 786-794
Reference Ris Wihthout Link
- 38
Scarpa F,
Grisan E,
Ruggeri A.
Automatic recognition of corneal nerve structures in images from confocal microscopy.
Invest Ophthalmol Vis Sci 2008; 49: 4801-4807
Reference Ris Wihthout Link
- 39
Kim J,
Markoulli M.
Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin
Exp Optom 2018; 101: 147-161
Reference Ris Wihthout Link
- 40
Dabbah MA,
Graham J,
Petropoulos I.
et al.
Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images.
Med Image Comput Comput Assist Interv 2010; 13: 300-307
Reference Ris Wihthout Link
- 41
Ting DSW,
Peng L,
Varadarajan AV.
et al.
Deep learning in ophthalmology: The technical and clinical considerations. Prog Retin
Eye Res 2019; 72: 100759
Reference Ris Wihthout Link
- 42
Lundervold AS,
Lundervold A.
An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019;
29: 102-127
Reference Ris Wihthout Link
- 43
Lecun Y,
Bengio Y,
Hinton G.
Deep learning. Nature 2015; 521: 436-444
Reference Ris Wihthout Link
- 44
Shen D,
Wu G.
Suk H Il.
Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng 2017; 19: 221-248
Reference Ris Wihthout Link
- 45
Jiang Z,
Zhang H,
Wang Y.
et al.
Retinal blood vessel segmentation using fully convolutional network with transfer
learning. Comput Med Imaging Graph 2018; 68: 1-15
Reference Ris Wihthout Link
- 46
Mishra Z,
Ganegoda A,
Selicha J.
et al.
Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived
Information. Sci Rep 2020; 10: 1-8
Reference Ris Wihthout Link
- 47
Sreng S,
Maneerat N,
Hamamoto K.
et al.
Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images.
Appl Sci 2020; 10: 4916
Reference Ris Wihthout Link
- 48
Fu H,
Baskaran M,
Xu Y.
et al.
A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical
Coherence Tomography Images. Am J Ophthalmol 2019; 203: 37-45
Reference Ris Wihthout Link
- 49
Setu MAKMAK,
Horstmann J,
Schmidt S.
et al.
Deep learning-based automatic meibomian gland segmentation and morphology assessment
in infrared meibography. Sci Rep 2021; 11: 7649
Reference Ris Wihthout Link
- 50
Williams BM,
Borroni D,
Liu R.
et al.
An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic
neuropathy using corneal confocal microscopy: a development and validation study.
Diabetologia 2020; 63: 419-430
Reference Ris Wihthout Link
- 51
Wei S,
Shi F,
Wang Y.
et al.
A Deep Learning Model for Automated Sub-Basal Corneal Nerve Segmentation and Evaluation
Using In Vivo Confocal Microscopy. Transl Vis Sci Technol 2020; 9: 32
Reference Ris Wihthout Link
- 52
Colonna A,
Scarpa F,
Ruggeri A.
Segmentation of Corneal Nerves Using a U-Net-Based Convolutional Neural Network. In:
Stoyanov D.
et al.
Computational Pathology and Ophthalmic Medical Image Analysis. OMIA COMPAY 2018 2018.
Lecture Notes in Computer Science, vol 11039. Cham: Springer; 2018: 185-192
Reference Ris Wihthout Link
- 53
Oakley JD,
Russakoff DB,
McCarron ME.
et al.
Deep learning-based analysis of macaque corneal sub-basal nerve fibers in confocal
microscopy images. Eye Vis (Lond) 2020; 7: 27
Reference Ris Wihthout Link
- 54
Yıldız E,
Arslan AT,
Taş AY.
et al.
Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves
on In Vivo Confocal Microscopy Images. Transl Vis Sci Technol 2021; 10: 33
Reference Ris Wihthout Link
- 55
Ronneberger O,
Fischer P,
Brox T.
U-net: Convolutional networks for biomedical image segmentation. In:
Navab N,
Hornegger J,
Wells W,
Frangi A.
eds.
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015.
Lecture Notes in Computer Science, vol 9351. Cham: Springer; 2015: 234-241
Reference Ris Wihthout Link
- 56
Zhu W,
Huang Y,
Zeng L.
et al.
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of
head and neck anatomy. Med Phys 2019; 46: 576-589
Reference Ris Wihthout Link
- 57
Nasrullah N,
Sang J,
Alam MS.
et al.
Automated lung nodule detection and classification using deep learning combined with
multiple strategies. Sensors (Basel) 2019; 19: 3722
Reference Ris Wihthout Link
- 58
Norman B,
Pedoia V,
Majumdar S.
Use of 2D U-net convolutional neural networks for automated cartilage and meniscus
segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology
2018; 288: 177-185
Reference Ris Wihthout Link
- 59
Setu MAK,
Schmidt S,
Musial G.
et al.
Segmentation and Evaluation of Corneal Nerves and Dendritic Cells From In Vivo Confocal
Microscopy Images Using Deep Learning. Transl Vis Sci Technol 2022; 11: 24
Reference Ris Wihthout Link
- 60
He K,
Gkioxari G,
Dollar P,
Girshick R.
Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy. Institute of Electrical and Electronics Engineers Inc.; 2017: 2980-2988
Reference Ris Wihthout Link
- 61
He K,
Zhang X,
Ren S,
Sun J.
Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, NV, USA: 2016: 770-778
Reference Ris Wihthout Link
- 62
Lin TY,
Maire M,
Belongie S.
et al.
Microsoft COCO: Common objects in context. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 8693 LNCS. Cham: Springer; 2014: 740-755
Reference Ris Wihthout Link