Nuklearmedizin 2024; 63(01): 21-33
DOI: 10.1055/a-2178-6739
Original Article

Correct and Incorrect Recommendations for or against Fine Needle Biopsies of Hypofunctioning Thyroid Nodules: Performance of Different Ultrasound-based Risk Stratification Systems

Richtige und falsche Empfehlungen für oder gegen Feinnadelbiopsien von hypofunktionellen Schilddrüsenknoten: Leistung verschiedener Ultraschall-Risikostratifizierungssysteme
Manuela Petersen
1   Department of General, Visceral, Vascular and Transplant Surgery, University Hospital Magdeburg, Germany
,
Simone A. Schenke
2   Department and Institute of Nuclear Medicine, Hospital Bayreuth, Germany
3   Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany
,
Philipp Seifert
4   Clinic of Nuclear Medicine, University Hospital Jena, Germany
,
Alexander R. Stahl
,
Rainer Görges
5   Clinic for Nuclear Medicine, University Hospital Essen, Germany
,
Michael Grunert
6   Department of Nuclear Medicine, German Armed Forces Hospital Ulm, Germany
7   Department of Nuclear Medicine, University Hospital Ulm, Germany
,
Burkhard Klemenz
6   Department of Nuclear Medicine, German Armed Forces Hospital Ulm, Germany
,
Michael C. Kreissl
3   Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany
8   Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
,
Michael Zimny
9   Institute for Nuclear Medicine Hanau, Germany
› Author Affiliations

Abstract

Purpose To evaluate the recommendations for or against fine needle biopsy (FNB) of hypofunctioning thyroid nodules (TNs) using of five different Ultrasound (US) -based risk stratification systems (RSSs).

Methods German multicenter study with 563 TNs (≥ 10 mm) in 534 patients who underwent thyroid US and surgery. All TNs were evaluated with ACR TI-RADS, EU-TIRADS, ATA, K-TIRADS 2016 and modified K-TIRADS 2021. A correct recommendation was defined as: malignant TN with recommendation for FNB (appropriate) or benign TN without recommendation for FNB (avoided). An incorrect recommendation was defined as: malignant TN without recommendation for FNB (missed) or benign TN with recommendation for FNB (unnecessary).

Results ACR TI-RADS demonstrated the highest rate of correct (42.3 %) and lowest rate of incorrect recommendations (57.7 %). The other RRSs showed similar results for correct (26.5 %–35.7 %) and incorrect (64.3 %–73.5 %) recommendations. ACR TI-RADS demonstrated the lowest rate of unnecessary (73.4 %) and the highest rate of appropriate (26.6 %) FNB recommendation. For other RSSs, the rates of unnecessary and appropriate FNB were between 75.2 %–77.1 % and 22.9 %–24.8 %. The lowest rate of missed FNB (14.7 %) and the highest rate of avoided FNB (85.3 %) was found for ACR TI-RADS. For the other RSSs, the rates of missed and avoided FNB were between 17.8 %–26.9 % and 73.1 %–82.2 %. When the size cutoff was disregarded, an increase of correct recommendations and a decrease of incorrect recommendations was observed for all RSSs.

Conclusion The RSSs vary in their ability to correctly recommend for or against FNB. An understanding of the impact of nodule size cutoffs seems necessary for the future of TIRADS.

Zusammenfassung

Die RSS zeigen im Hinblick auf die jeweilige korrekte Empfehlung zur FNB eine erhebliche Heterogenität (Variabilität). Inwiefern bzw. wie stark ein Cutoff bei der Knotengröße, sich auswirkt muss zukünftig bei TIRADS evaluiert werden.



Publication History

Received: 14 June 2023

Accepted: 18 September 2023

Article published online:
23 October 2023

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Reiners C. et al. ‘Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96278 unselected employees’. Thyroid Off. J. Am. Thyroid Assoc 2004; 14 (11) 926-932 DOI: 10.1089/thy.2004.14.926.
  • 2 Wienhold R, Scholz M, Adler JR-B. et al. ‘The management of thyroid nodules: a retrospective analysis of health insurance data’. Dtsch. Arzteblatt Int 2013; 110 (49) 827-834 DOI: 10.3238/arztebl.2013.0827.
  • 3 Carlé A, Krejbjerg A, Laurberg P. ‘Epidemiology of nodular goitre. Influence of iodine intake’. Best Pract. Res. Clin. Endocrinol. Metab 2014; 28 (04) 465-479 DOI: 10.1016/j.beem.2014.01.001.
  • 4 Schaffner M. et al. ‘Barriers Against Prevention Programs for Iodine Deficiency Disorders in Europe: A Delphi Study’. Thyroid Off. J. Am. Thyroid Assoc 2021; 31 (04) 649-657 DOI: 10.1089/thy.2020.0065.
  • 5 Schaffner M. et al. ‘The economic impact of prevention, monitoring and treatment strategies for iodine deficiency disorders in Germany’. Endocr. Connect 2021; 10 (01) 1-12 DOI: 10.1530/EC-20-0384.
  • 6 Grussendorf M, Ruschenburg I, Brabant G. ‘Malignancy rates in thyroid nodules: a long-term cohort study of 17592 patients’. Eur. Thyroid J 2022; 11 (04) e220027 DOI: 10.1530/ETJ-22-0027.
  • 7 Kwak JY. et al. ‘Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk’. Radiology 2011; 260 (03) 892-899 DOI: 10.1148/radiol.11110206.
  • 8 Haugen BR. et al. ‘2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer’. Thyroid Off. J. Am. Thyroid Assoc 2016; 26 (01) 1-133 DOI: 10.1089/thy.2015.0020.
  • 9 Shin JH. et al. ‘Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations’. Korean J. Radiol 2016; 17 (03) 370-395 DOI: 10.3348/kjr.2016.17.3.370.
  • 10 Tessler FN. et al. ‘ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee’. J. Am. Coll. Radiol. JACR 2017; 14 (05) 587-595 DOI: 10.1016/j.jacr.2017.01.046.
  • 11 Russ G, Bonnema SJ, Erdogan MF. et al. ‘European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS’. Eur. Thyroid J 2017; 6 (05) 225-237 DOI: 10.1159/000478927.
  • 12 Ha EJ. et al. ‘2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations’. Korean J. Radiol 2021; 22 (12) 2094-2123 DOI: 10.3348/kjr.2021.0713.
  • 13 Chung SR. et al. ‘Diagnostic Performance of the Modified Korean Thyroid Imaging Reporting and Data System for Thyroid Malignancy: A Multicenter Validation Study’. Korean J. Radiol 2021; 22 (09) 1579-1586 DOI: 10.3348/kjr.2021.0230.
  • 14 Na DG, Paik W, Cha J. et al. ‘Diagnostic performance of the modified Korean Thyroid Imaging Reporting and Data System for thyroid malignancy according to nodule size: a comparison with five society guidelines’. Ultrason. Seoul Korea 2021; 40 (04) 474-485 DOI: 10.14366/usg.20148.
  • 15 Hoang JK, Middleton WD, Tessler FN. ‘Update on ACR TI-RADS: Successes, Challenges, and Future Directions, From the Am J Roentgenol Special Series on Radiology Reporting and Data Systems’. Am J Roentgenol Am. J. Roentgenol 2021; 216 (03) 570-578 DOI: 10.2214/Am J Roentgenol.20.24608.
  • 16 Yoon SJ. et al. ‘Similarities and Differences Between Thyroid Imaging Reporting and Data Systems’. Am J Roentgenol Am. J. Roentgenol 2019; 213 (02) W76-W84 DOI: 10.2214/Am J Roentgenol.18.20510.
  • 17 Grani G. et al. ‘Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” TIRADS’. J. Clin. Endocrinol. Metab 2019; 104 (01) 95-102 DOI: 10.1210/jc.2018-01674.
  • 18 Ha SM. et al. ‘Diagnostic Performance of Practice Guidelines for Thyroid Nodules: Thyroid Nodule Size versus Biopsy Rates’. Radiology 2019; 291 (01) 92-99 DOI: 10.1148/radiol.2019181723.
  • 19 Ha EJ, Na DG, Baek JH. et al. ‘US Fine-Needle Aspiration Biopsy for Thyroid Malignancy: Diagnostic Performance of Seven Society Guidelines Applied to 2000 Thyroid Nodules’. Radiology 2018; 287 (03) 893-900 DOI: 10.1148/radiol.2018171074.
  • 20 Xu T. et al. ‘Validation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination’. Endocrine 2019; 64 (02) 299-307 DOI: 10.1007/s12020-018-1817-8.
  • 21 Giovanella L. et al. ‘EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy’. Eur. J. Nucl. Med. Mol. Imaging 2019; 46 (12) 2514-2525 DOI: 10.1007/s00259-019-04472-8.
  • 22 Seifert P. et al. ‘Diagnostic Performance of Kwak, EU, ACR, and Korean TIRADS as Well as ATA Guidelines for the Ultrasound Risk Stratification of Non-Autonomously Functioning Thyroid Nodules in a Region with Long History of Iodine Deficiency: A German Multicenter Trial’. Cancers 2021; 13 (17) 4467 DOI: 10.3390/cancers13174467.
  • 23 Seifert P, Görges R, Zimny M. et al. ‘Interobserver agreement and efficacy of consensus reading in Kwak-, EU-, and ACR-thyroid imaging recording and data systems and ATA guidelines for the ultrasound risk stratification of thyroid nodules’. Endocrine 2020; 67 (01) 143-154 DOI: 10.1007/s12020-019-02134-1.
  • 24 Kim PH, Suh CH, Baek JH. et al. ‘Unnecessary thyroid nodule biopsy rates under four ultrasound risk stratification systems: a systematic review and meta-analysis’. Eur. Radiol 2021; 31 (05) 2877-2885 DOI: 10.1007/s00330-020-07384-6.
  • 25 Yim Y. et al. ‘Concordance of Three International Guidelines for Thyroid Nodules Classified by Ultrasonography and Diagnostic Performance of Biopsy Criteria’. Korean J. Radiol 2020; 21 (01) 108-116 DOI: 10.3348/kjr.2019.0215.
  • 26 Magri F. et al. ‘Performance of the ACR TI-RADS and EU TI-RADS scoring systems in the diagnostic work-up of thyroid nodules in a real-life series using histology as reference standard’. Eur. J. Endocrinol 2020; 183 (05) 521-528 DOI: 10.1530/EJE-20-0682.
  • 27 Magri F. et al. ‘Comparison of elastographic strain index and thyroid fine-needle aspiration cytology in 631 thyroid nodules’. J. Clin. Endocrinol. Metab 2013; 98 (12) 4790-4797 DOI: 10.1210/jc.2013-2672.
  • 28 Kamran SC. et al. ‘Thyroid nodule size and prediction of cancer’. J. Clin. Endocrinol. Metab 2013; 98 (02) 564-570 DOI: 10.1210/jc.2012-2968.
  • 29 McHenry CR, Huh ES, Machekano RN. ‘Is nodule size an independent predictor of thyroid malignancy?’. Surgery 2008; 144 (06) 1062-1068 DOI: 10.1016/j.surg.2008.07.021.
  • 30 Shrestha M, Crothers BA, Burch HB. ‘The impact of thyroid nodule size on the risk of malignancy and accuracy of fine-needle aspiration: a 10-year study from a single institution’. Thyroid Off. J. Am. Thyroid Assoc 2012; 22 (12) 1251-1256 DOI: 10.1089/thy.2012.0265.
  • 31 Mazzaferri EL, Jhiang SM. ‘Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer’. Am. J. Med 1994; 97 (05) 418-428 DOI: 10.1016/0002-9343(94)90321-2.
  • 32 Machens A, Holzhausen H-J, Dralle H. ‘The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma’. Cancer 2005; 103 (11) 2269-2273 DOI: 10.1002/cncr.21055.
  • 33 Trimboli P, Durante C. ‘Ultrasound risk stratification systems for thyroid nodule: between lights and shadows, we are moving towards a new era’. Endocrine 2020; 69 (01) 1-4 DOI: 10.1007/s12020-020-02196-6.
  • 34 Giovanella L, Deandreis D, Vrachimis A. et al. ‘Molecular Imaging and Theragnostics of Thyroid Cancers’. Cancers 2022; 14 (05) 1272 DOI: 10.3390/cancers14051272.
  • 35 Campennì A. et al. ‘(99m)Tc-Methoxy-Isobutyl-Isonitrile Scintigraphy Is a Useful Tool for Assessing the Risk of Malignancy in Thyroid Nodules with Indeterminate Fine-Needle Cytology’. Thyroid Off. J. Am. Thyroid Assoc 2016; 26 (08) 1101-1109 DOI: 10.1089/thy.2016.0135.