Angewandte Nuklearmedizin 2024; 47(01): 62-67
DOI: 10.1055/a-2145-1120
Immunologie und Immuntherapie
Übersicht

Bildgebung bei Großgefäßvaskulitiden

Imaging in large-vessel vasculitis
Claus-Jürgen Bauer
1   Sektion Rheumatologie und klinische Immunologie, Medizinische Klinik III, Universitätsklinikum Bonn, Bonn
,
Simon Michael Petzinna
1   Sektion Rheumatologie und klinische Immunologie, Medizinische Klinik III, Universitätsklinikum Bonn, Bonn
,
Valentin Sebastian Schäfer
1   Sektion Rheumatologie und klinische Immunologie, Medizinische Klinik III, Universitätsklinikum Bonn, Bonn
› Author Affiliations

Zusammenfassung

Großgefäßvaskulitiden sind rheumatologische Autoimmunerkrankungen, die mit entzündlichen Gefäßwandveränderungen in der arteriellen Strombahn einhergehen und zu vielfältigen Organschäden führen können. Die beiden Hauptformen sind die Riesenzellarteriitis und die Takayasu-Arteriitis.

Als Bildgebungsmodalitäten stehen die Gefäßsonografie mit ihren Stärken in der unmittelbaren Point-of-care-Anwendung (insbesondere in der Riesenzellarteriitisdiagnostik), die Magnetresonanztomografie und Computertomografie mit einer besonders guten Darstellung der Aorta und ihrer Abgänge sowie die 18F-Fluordesoxyglukose-Positronenemissionstomografie (18F-FDG-PET) zur Detektion von Entzündungsherden und der Großgefäßvaskulitisdiagnostik zur Verfügung. Zukünftige Entwicklungen in der bildgebenden Diagnostik von Großgefäßvaskulitiden könnten von Verfahren profitieren, die eine zielgerichtete Darstellung der Gefäßentzündung ermöglichen, wie beispielsweise das Gallium-68 DOTAVAP-P1 PET, welches derzeit am Universitätsklinikum Bonn erforscht wird.

Abstract

Large-vessel vasculitides are rheumatologic autoimmune diseases associated with inflammatory vessel wall changes in the arterial system that can lead to severe organ damage. The two main forms are giant cell arteritis and Takayasu arteritis.

State-of-the-art imaging modalities include vascular sonography with its strength in immediate point-of-care application (especially in giant cell arteritis diagnosis), magnetic resonance imaging and computed tomography with particular emphasis on visualization of the aorta and its branches, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) addressing the detection of inflammatory lesions and large-vessel vasculitis. Future developments in large-vessel vasculitis imaging may benefit from techniques that allow targeted imaging of vascular inflammation, such as gallium-68 DOTAVAP-P1 PET, which is currently under investigation at the University Hospital Bonn.



Publication History

Article published online:
01 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Jennette JC. Overview of the 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Clinical and experimental nephrology 2013; 17: 603-606 DOI: 10.1007/s10157-013-0869-6. (PMID: 24072416)
  • 2 Arend WP, Michel BA, Bloch DA. et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis & Rheumatism 1990; 33: 1129-1134 DOI: 10.1002/art.1780330811. (PMID: 1975175)
  • 3 Michel B, Arend W, Hunder G. Clinical differentiation between giant cell (temporal) arteritis and Takayasu’s arteritis. The Journal of rheumatology 1996; 23: 106-111 (PMID: 8838517)
  • 4 Hellmich B, Agueda A, Monti S. et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis 2020; 79: 19-30 DOI: 10.1136/annrheumdis-2019-215672.
  • 5 Muratore F, Pipitone N, Salvarani C. et al. Imaging of vasculitis: State of the art. Best practice & research Clinical rheumatology 2016; 30: 688-706 DOI: 10.1016/j.berh.2016.09.010. (PMID: 27931962)
  • 6 Schäfer VS, Chrysidis S, Dejaco C. et al. Assessing Vasculitis in Giant Cell Arteritis by Ultrasound: Results of OMERACT Patient-based Reliability Exercises. The Journal of rheumatology 2018; 45: 1289-1295 DOI: 10.3899/jrheum.171428. (PMID: 29961687)
  • 7 Schäfer VS, Jin L, Schmidt WA. Imaging for diagnosis, monitoring, and outcome prediction of large vessel vasculitides. Current rheumatology reports 2020; 22: 1-14 DOI: 10.1007/s11926-020-00955-y. (PMID: 32959107)
  • 8 Petzinna S, Burg L, Terheyden J. et al. POS0724 TRANSORBITAL ULTRASOUND IN NEWLY DIAGNOSED GIANT CELL ARTERITIS – A PROSPECTIVE STUDY. Annals of the Rheumatic Diseases  2023; 82 (Suppl. 01) 649.2-650
  • 9 Schäfer VS, Juche A, Ramiro S. et al. Ultrasound cut-off values for intima-media thickness of temporal, facial and axillary arteries in giant cell arteritis. Rheumatology 2017; 56: 1479-1483 DOI: 10.1093/rheumatology/kex143. (PMID: 28431106)
  • 10 Maeda H, Handa N, Matsumoto M. et al. Carotid lesions detected by B-mode ultrasonography in Takayasu’s arteritis:“macaroni sign” as an indicator of the disease. Ultrasound in medicine & biology 1991; 17: 695-701
  • 11 Barra L, Kanji T, Malette J. et al. Imaging modalities for the diagnosis and disease activity assessment of Takayasu’s arteritis: a systematic review and meta-analysis. Autoimmunity reviews 2018; 17: 175-187 DOI: 10.1016/j.autrev.2017.11.021. (PMID: 29313811)
  • 12 Dejaco C, Ramiro S, Duftner C. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Annals of the rheumatic diseases 2018; 77: 636-643 DOI: 10.1136/annrheumdis-2017-212649. (PMID: 29358285)
  • 13 Yamada I, Nakagawa T, Himeno Y. et al. Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. Journal of Magnetic Resonance Imaging 2000; 11: 481-487
  • 14 Kato Y, Terashima M, Ohigashi H. et al. Vessel wall inflammation of Takayasu arteritis detected by contrast-enhanced magnetic resonance imaging: association with disease distribution and activity. PloS one 2015; 10: e0145855
  • 15 Treitl KM, Maurus S, Sommer NN. et al. 3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: a feasibility study. European radiology 2017; 27: 2119-2128 DOI: 10.1007/s00330-016-4525-x. (PMID: 27510630)
  • 16 Prieto-González S, García-Martínez A, Tavera-Bahillo I. et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. A prospective, longitudinal study. Medicine (Baltimore) 2015; 94: e486 DOI: 10.1097/MD.0000000000000486. (PMID: 25654393)
  • 17 Dejaco C, Ramiro S, Bond M. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice: 2023 update. Accepted for publication: Annals of the Rheumatic Diseases 2023; tba.
  • 18 Slart RH. Writing group; Reviewer group; Members of EANM Cardiovascular; Members of EANM Infection & Inflammation; Members of Committees, SNMMI Cardiovascular; Members of Council, PET Interest Group; Members of ASNC; EANM Committee Coordinator. FDG-PET/CT (A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. European journal of nuclear medicine and molecular imaging 2018; 45: 1250-1269 DOI: 10.1007/s00259-018-3973-8. (PMID: 29637252)
  • 19 Boysson H De, Dumont A, Liozon E. et al. Giant-cell arteritis: concordance study between aortic CT angiography and FDG-PET/CT in detection of large-vessel involvement. European journal of nuclear medicine and molecular imaging 2017; 44: 2274-2279
  • 20 Schirmer JH, Aries PM, Balzer K. et al. S2k-Leitlinie: Management der Großgefäßvaskulitiden. Z Rheumatol 2020; 79: S67-S95
  • 21 Nielsen BD, Gormsen LC, Hansen IT. et al. Three days of high-dose glucocorticoid treatment attenuates large-vessel 18F-FDG uptake in large-vessel giant cell arteritis but with a limited impact on diagnostic accuracy. Eur J Nucl Med Mol Imaging 2018; 45: 1119-1128 DOI: 10.1007/s00259-018-4021-4.
  • 22 Jalkanen S, Salmi M. VAP-1 and CD73, endothelial cell surface enzymes in leukocyte extravasation. Arteriosclerosis, thrombosis, and vascular biology 2008; 28: 18-26 DOI: 10.1161/ATVBAHA.107.153130. (PMID: 17962625)