Planta Med 2021; 87(08): 620-630
DOI: 10.1055/a-1348-1634
Biological and Pharmacological Activity
Original Papers

Peperomin E Induces Apoptosis and Cytoprotective Autophagy in Human Prostate Cancer DU145 Cells In Vitro and In Vivo

Min Lin
1   School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
,
Qiannan Zhu
1   School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
,
1   School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
2   Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
,
Jigang Pan
3   School of Basic Medical Science, Guizhou Medical University, Guiyang, China
› Institutsangaben
Gefördert durch: National Natural Science Foundation of China 31960188
Gefördert durch: Natural Science Foundation of Anhui Province 1808085MH248

Abstract

Peperomin E was first isolated from Peperomia dindygulensis, an anticarcinogenic herb, and exhibited anticancer activity in many cancer cell lines. To date, it is unknown whether peperomin E has an effect on human prostate cancer DU145 cells in vitro and in vivo. In this study, we used MTT to assess the proliferation inhibition activity of peperomin E in DU145 cells in vitro and observed the cell morphological changes by a phase contrast microscope. A DU145 cell xenograft tumor mouse model was used to evaluate the efficacy of peperomin E in vivo. Apoptosis rates were measured by flow cytometry, and protein expression levels were analyzed by western blot. The results showed that peperomin E significantly inhibited the proliferation of DU145 cells in vitro and reduced the weight and volume of tumors in vivo. Peperomin E also significantly induced the apoptosis and autophagic response of DU145 cells. The autophagic inhibitors LY294002 and chloroquine enhanced peperomin E-mediated inhibition of DU145 cell proliferation and induction of DU145 cell apoptosis. The results also showed that the Akt/mTOR pathway participated in peperomin E-induced autophagy in DU145 cells. In summary, our finding showed that peperomin E had an effect on DU145 cells in vitro and in a nude mouse DU145 cell xenograft model in vivo, demonstrated that peperomin E could significantly induce apoptosis and the autophagic response in DU145 cells and that autophagy played a cytoprotective role in peperomin E-treated DU145 cells. These results suggest that the combination of peperomin E treatment and autophagic inhibition has potential for the treatment of prostate cancer.

Supporting Information



Publikationsverlauf

Eingereicht: 02. September 2020

Angenommen nach Revision: 01. Januar 2021

Artikel online veröffentlicht:
21. Januar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66: 271-289
  • 2 Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 2020; 77: 38-52
  • 3 Jia ZP, Chen ZY, Gao X. Progression of medical therapy for castration-resistant prostate cancer. J Clin Urology (China) 2020; 35: 312-320
  • 4 Lv X, Zhang WW, Cheng XH, Wang HG, Yu DY, Feng BM. Advances on the secolignans compounds in natural products. J Shenyang Pharm Univ 2014; 31: 922-926
  • 5 Cheng L. Chemical Constituents and antitumor Activity of Peperomia dindygulensis [Dissertation]. Beijing: Academy of Military Medical Science; 2015
  • 6 Govindachari TR, Kumari GNK, Partho PD. Two secolignans from Peperomia dindigulensis . Phytochemistry 1998; 49: 2129-2131
  • 7 Li Y, Zhang J, Liu M. Chemical constituents of Peperomia cavaleriei . Chem Nat Compd 2018; 54: 175-177
  • 8 Li Y, Pan J, Gou M. The anti-proliferation, cycle arrest and apoptotic-inducing activity of peperomin E on prostate cancer PC-3 cell line. Molecules 2019; 24: 1472
  • 9 Wu JL, Li N, Hasegawa T, Sakai J, Mitsui T, Ogura H, Kataoka T, Oka S, Kiuchi M, Tomida A, Turuo T, Li MJ, Tang WX, Ando M. Bioactive secolignans from Peperomia dindygulensis . J Nat Prod 2006; 69: 90-794
  • 10 Xu S, Li N, Ning MM, Zhou CH, Yang QR, Wang MW. Bioactive compounds from Peperomia pellucida . J Nat Prod 2006; 69: 247-250
  • 11 Cheng MJ, Lee SJ, Chang YY, Wu SH, Tsai IL, Jayaprakasam B, Chen IS. Chemical and cytotoxic constituents from Peperomia sui. Phytochemistry 2003; 63: 603-608
  • 12 Zhang P, Yang X, Wang L, Zhang D, Luo Q, Wang B. Overexpressing miR-335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer. Int J Oncol 2019; 54: 1981-1994
  • 13 Liu YQ, Tian J, Qian K, Zhao XB, Morris-Natschke SL, Yang L, Nan X, Tian X, Lee KH. Recent progress on C-4-modified podophyllotoxin analogs as potent antitumor agents. Med Res Rev 2015; 35: 1-62
  • 14 Che CM, Jan FY, Chen MT, Lee TJ. Peperomins A, B, and C, novel secolignans from Peperomia japonica . Heterocycles 1989; 29: 411-414
  • 15 Lin MG, Yu DH, Wang QW, Lu Q, Zhu WJ, Bai F, Li GX, Wang XW, Yang YF, Qin XM, Fang C, Chen HZ, Yang GH. Secolignans with antiangiogenic activities from Peperomia dindygulensis . Chem Biodivers 2011; 8: 862-871
  • 16 Xu S. Study on the chemical Constituents and pharmacological Activity of Peperomia pellucida and P. tetraphylla var. sinensis [Dissertation]. Shanghai: Shanghai Institute of Medicine, Chinese Academy of Sciences; 2006
  • 17 Wang XZ, Cheng Y, Wu H, Li N, Liu R, Yang XL, Qiu YY, Wen HM, Liang J. The natural secolignan peperomin E induces apoptosis of human gastric carcinoma cells via the mitochondrial and PI3K/Akt signaling pathways in vitro and in vivo . Phytomedicine 2016; 23: 818-827
  • 18 Wang XZ, Cheng Y, Wang KL, Liu R, Yang XL, Wen HM, Chai C, Liang JY, Wu H. Peperomin E reactivates silenced tumor suppressor genes in lung cancer cells by inhibition of DNA methyltransferase. Cancer Sci 2016; 107: 1506-1519
  • 19 Liu G, Zou H, Luo T, Long M, Bian J, Liu X, Gu J, Yuan Y, Song R, Wang Y, Zhu J, Liu Z. Caspase-dependent and caspase-independent pathways are involved in cadmium-induced apoptosis in primary rat proximal tubular cell culture. PLoS One 2016; 11: e0166823
  • 20 Stepień A, Izdebska M, Grzanka A. Rodzaje śmierci komórki [The types of cell death]. Postepy Hig Med Dosw (Online) 2007; 61: 420-428
  • 21 Lee HJ, Lee HJ, Lee EO, Ko SG, Bae HS, Kim CH, Ahn KS, Lu J, Kim SH. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis. Cancer let 2008; 270: 342-353
  • 22 Mazumder S, Plesca D, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 2008; 414: 13-21
  • 23 Yang M, Bai L, Yu W, Sun X, Xu G, Guan R, Yang Y, Qiu M, Zhang Y, Tian J, Fang H. Expression of autophagy-associated proteins in papillary thyroid carcinoma. Oncol Lett 2017; 14: 411-415
  • 24 Cirone M, Gilardini Montani MS, Granato M, Garufi A, Faggioni A, DʼOrazi G. Autophagy manipulation as a strategy for efficient anticancer therapies: possible consequences. J Exp Clin Canc Res 2019; 38: 262
  • 25 Zhao Y, Wang W, Min I, Wyrwas B, Moore M, Zarnegar R, Fahey TJ. BRAF V600E-dependent role of autophagy in uveal melanoma. J Cancer Res Clin 2017; 143: 447-455
  • 26 Weiskirchen R, Tacke F. Relevance of autophagy in parenchymal and non-parenchymal liver cells for health and disease. Cells 2019; 8: 16
  • 27 Li MY, Zhu XL, Zhao BX, Shi L, Wang W, Hu W, Qin SL, Chen BH, Zhou PH, Qiu B, Gao Y, Liu B. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis 2019; 10: 489
  • 28 Kang C, Elledge SJ. How autophagy both activates and inhibits cellular senescence. Autophagy 2016; 12: 898-899
  • 29 Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014; 26: 2694-2701
  • 30 Pampliega O, Orhon I, Patel B, Sridhar S, Diaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P, Cuervo AM. Functional interaction between autophagy and ciliogenesis. Nature 2013; 502: 194-200
  • 31 Festuccia C. Targeting the PI3K/AKT/mTOR pathway in prostate cancer development and progression: insight to therapy. Clin Cancer Drugs 2016; 3: 36-62
  • 32 Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, Cheng JX. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 2014; 19: 393-406
  • 33 Kumar D, Shankar S, Srivastava RK. Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms. Mol Cancer 2013; 12: 171
  • 34 Zeng X, Li Y, Fan J, Zhao H, Xian Z, Sun Y, Wang Z, Wang S, Zhang G, Ju D. Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-Hodgkinʼs lymphoma cells. Cell Death Dis 2013; 4: e840
  • 35 Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelárová H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243: 240-246