Nuklearmedizin 2019; 58(01): 28-38
DOI: 10.1055/a-0809-4670
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Response of locally advanced rectal cancer (LARC) to radiochemotherapy: DW-MRI and multiparametric PET/CT in correlation with histopathology

Lokal fortgeschrittenes mit neoadjuvanter Radiochemotherapie behandeltes Rektumkarzinom (LFRK): Histopathologische Korrelation von diffusionsgewichteter Magnetresonanztomographie und multiparametrischer PET/CT
Milena Cerny*
1   Lausanne University Hospital, Diagnostic and Interventional Radiology
,
Vincent Dunet*
1   Lausanne University Hospital, Diagnostic and Interventional Radiology
,
Caterina Rebecchini
2   Lausanne University Hospital, Institute of Pathology
,
Dieter Hahnloser
3   Lausanne University Hospital, Visceral Surgery
,
John Prior
4   Lausanne University Hospital, Nuclear Medicine and Molecular Imaging
,
Christine Sempoux
2   Lausanne University Hospital, Institute of Pathology
,
Sabine Schmidt
1   Lausanne University Hospital, Diagnostic and Interventional Radiology
› Author Affiliations
Further Information

Publication History

08/31/2018

11/27/2018

Publication Date:
15 February 2019 (online)

Abstract

Aim To prospectively evaluate histological significance and predictive value of changes in apparent diffusion coefficient (ADC) and 18F-FDG PET/CT parameters in locally advanced rectal cancer (LARC) after neoadjuvant radiochemotherapy (RCT).

Methods Twenty-one patients with untreated LARC underwent pre-RCT and post-RCT 18F-FDG PET/CT and diffusion-weighted magnetic resonance imaging (DW-MRI), followed by surgery. For both datasets, two readers measured the tumor SUVmax, SUVmean, MTV, TLG, ADCmin, ADCmean, and respective differences (∆SUVmax, ∆SUVmean, ∆MTV, ∆TLG, ∆ADCmin, ∆ADCmean) for the whole tumor. Tumor regression grade according to Mandard (TRGm), percentage of residual tumor cells and fibrosis were estimated by two pathologists in consensus. Relationship between parameters was assessed on stepwise multivariate regression analysis and ROC curve analysis to evaluate their performance and predict the treatment response.

Results Eighteen LARCs were analyzed. SUVmax and SUVmean decreased from 21.3 ± 8.9 to 9.3 ± 5.5 g/mL, (p = 0.0002) and 12.3 ± 5.1 to 5.4 ± 3.1 g/mL, (p = 0.0002), respectively, after RCT, whereas ADCmin and ADCmean increased from 396 ± 269 to 573 ± 313×10–6 mm2/s (p = 0.014) and 1159 ± 212 to 1355 ± 194×10–6 mm2/s (p = 0.0008), respectively. TRGm and percentage of residual tumor cells independently correlated with post-RCT SUVmean (β = 0.73 and β = 0.76, p < 0.001) and post-RCT SUVmax (β = 0.72 and β = 0.78, p < 0.001), whereas percentage of fibrosis independently correlated with ∆ADCmean (β = 0.38, p = 0.008). Post-RCT, SUVmax and SUVmean performed well in predicting TRGm < 3 and residual tumor cells ≤ 20 %. ΔADCmean predicted fibrosis > 70 % well.

Conclusion Post-RCT SUVmean, SUVmax and ∆ADCmean are complementary parameters for respectively evaluating residual tumor burden and amount of fibrosis in LARC. However, only SUV independently correlated with TRGm.

Zusammenfassung

Ziel Prospektive Untersuchung des Änderungseinflusses von apparenten Diffusionskoeffizienten (ADC) und 18F-FDG PET/CT Parameter auf Histologie und Prognose bei lokal fortgeschrittenem und mit neoadjuvanter Radiochemotherapie (NRC) behandelten Rektumkarzinom (LFRK)

Methoden Einundzwanzig Patienten mit unbehandeltem LFRK wurden vor und nach NRC mit 18F-FDG PET/CT und diffusionsgewichteter Magnetresonanztomographie (DW-MRI) untersucht. Anschliessend wurden sie operiert. Für beide Datensätze wurden von zwei Beobachtern nach Einschluss des gesamten Tumors SUVmax, SUVmean, MTV, TLG, ADCmin, ADCmean sowie die jeweiligen Unterschiede (∆SUVmax, ∆SUVmean, ∆MTV, ∆TLG, ∆ADCmin, ∆ADCmean) gemessen.

Zwei Pathologen ermittelten gemeinsam das Tumorregressionsausmass gemäss Mandard (TRGm), sowie den residuellen Tumorzellen- und Fibroseprozentsatz. Mit multivariater Regression und ROC-Kurvenanalyse wurde das Parameterverhältnis untereinander, und ihre Fähigkeit, den Behandlungserfolg vorherzusagen, errechnet.

Ergebnisse Achtzehn LFRK wurden analysiert. Nach NRC verringerten sich SUVmax und SUVmean von 21.3 ± 8.9 auf 9.3 ± 5.5 g/mL (p = 0.0002), beziehungsweise von 12.3 ± 5.1 auf 5.4 ± 3.1 g/mL (p = 0.0002), während ADCmin und ADCmean von 396 ± 269 auf 573 ± 313×10–6 mm2/s (p = 0.014), beziehungsweise von 1159 ± 212 auf 1355 ± 194×10–6 mm2/s (p = 0.0008) anstiegen. TRGm und der residuelle Tumorzellenprozentsatz korrelierten unabhängig mit post-NRC SUVmean (β = 0.73 und β = 0.76, p < 0.001) und post-NRC SUVmax (β = 0.72 und β = 0.78, p < 0.001), während der Fibroseprozentsatz unabhängig mit ∆ADCmean (β = 0.38, p = 0.008) korrelierte.

Post-NRC SUVmax und SUVmeanerlaubten die Vorhersage von TRGm < 3 und von residuellen Tumorzellen ≤ 20 %, sowie ΔADCmean eine Fibrose > 70 %.

Schlussfolgerung Post-NRC SUVmean, SUVmax und ∆ADCmean sind komplementäre Parameter, um die residuelle Tumorlast, beziehungsweise den Fibroseanteil von LFRK zu beurteilen. Jedoch korreliert nur der SUV unabhängig mit TRGm.

* contributed equally to this work


 
  • References

  • 1 Sauer R, Becker H, Hohenberger W. et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 2004; 351: 1731-1740 doi:10.1056/NEJMoa040694
  • 2 Park IJ, You YN, Agarwal A. et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol 2012; 30: 1770-1776 doi:10.1200/JCO.2011.39.7901
  • 3 Asli LM, Johannesen TB, Myklebust TA. et al. Preoperative chemoradiotherapy for rectal cancer and impact on outcomes – A population-based study. Radiother Oncol 2017; 123: 446-453 doi:10.1016/j.radonc.2017.04.012
  • 4 Patel UB, Taylor F, Blomqvist L. et al. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol 2011; 29: 3753-3760 doi:10.1200/JCO.2011.34.9068
  • 5 Maas M, Nelemans PJ, Valentini V. et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 2010; 11: 835-844 doi:10.1016/S1470–2045(10)70172–8
  • 6 Mandard AM, Dalibard F, Mandard JC. et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994; 73: 2680-2686
  • 7 Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis 1997; 12: 19-23
  • 8 Thies S, Langer R. Tumor regression grading of gastrointestinal carcinomas after neoadjuvant treatment. Front Oncol 2013; 3: 262 doi:10.3389/fonc.2013.00262
  • 9 Suwa K, Ushigome T, Ohtsu M. et al. Risk Factors for Early Postoperative Small Bowel Obstruction After Anterior Resection for Rectal Cancer. World J Surg. 2017 DOI: doi:10.1007/s00268–017–4152-y DOI: doi:10.1007/s00268–017–4152-y
  • 10 Qu H, Liu Y, Bi DS. Clinical risk factors for anastomotic leakage after laparoscopic anterior resection for rectal cancer: a systematic review and meta-analysis. Surg Endosc 2015; 29: 3608-3617 doi:10.1007/s00464–015–4117-x
  • 11 Renehan AG, Malcomson L, Emsley R. et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol 2016; 17: 174-183 doi:10.1016/S1470–2045(15)00467–2
  • 12 Park J, Chang KJ, Seo YS. et al. Tumor SUVmax Normalized to Liver Uptake on (18)F-FDG PET/CT Predicts the Pathologic Complete Response After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Nucl Med Mol Imaging 2014; 48: 295-302 doi:10.1007/s13139–014–0289-x
  • 13 Monguzzi L, Ippolito D, Bernasconi DP. et al. Locally advanced rectal cancer: value of ADC mapping in prediction of tumor response to radiochemotherapy. Eur J Radiol 2013; 82: 234-240 doi:10.1016/j.ejrad.2012.09.027
  • 14 Maffione AM, Ferretti A, Grassetto G. et al. Fifteen different 18F-FDG PET/CT qualitative and quantitative parameters investigated as pathological response predictors of locally advanced rectal cancer treated by neoadjuvant chemoradiation therapy. Eur J Nucl Med Mol Imaging 2013; 40: 853-864 doi:10.1007/s00259–013–2357–3
  • 15 Lambregts DM, Vandecaveye V, Barbaro B. et al. Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 2011; 18: 2224-2231 doi:10.1245/s10434–011–1607–5
  • 16 Kim SH, Lee JM, Hong SH. et al. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 2009; 253: 116-125 doi:10.1148/radiol.2532090027
  • 17 Ippolito D, Monguzzi L, Guerra L. et al. Response to neoadjuvant therapy in locally advanced rectal cancer: assessment with diffusion-weighted MR imaging and 18FDG PET/CT. Abdom Imaging 2012; 37: 1032-1040 doi:10.1007/s00261–011–9839–1
  • 18 Ippolito D, Fior D, Trattenero C. et al. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer. World J Radiol 2015; 7: 509-520 doi:10.4329/wjr.v7.i12.509
  • 19 Hotker AM, Tarlinton L, Mazaheri Y. et al. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters. Eur Radiol 2016; 26: 4303-4312 doi:10.1007/s00330–016–4283–9
  • 20 Genovesi D, Filippone A, Ausili Cefaro G. et al. Diffusion-weighted magnetic resonance for prediction of response after neoadjuvant chemoradiation therapy for locally advanced rectal cancer: preliminary results of a monoinstitutional prospective study. Eur J Surg Oncol 2013; 39: 1071-1078 doi:10.1016/j.ejso.2013.07.090
  • 21 Foti PV, Privitera G, Piana S. et al. Locally advanced rectal cancer: Qualitative and quantitative evaluation of diffusion-weighted MR imaging in the response assessment after neoadjuvant chemo-radiotherapy. Eur J Radiol Open 2016; 3: 145-152 doi:10.1016/j.ejro.2016.06.003
  • 22 Elmi A, Hedgire SS, Covarrubias D. et al. Apparent diffusion coefficient as a non-invasive predictor of treatment response and recurrence in locally advanced rectal cancer. Clin Radiol 2013; 68: e524-531 doi:10.1016/j.crad.2013.05.094
  • 23 Blazic IM, Lilic GB, Gajic MM. Quantitative Assessment of Rectal Cancer Response to Neoadjuvant Combined Chemotherapy and Radiation Therapy: Comparison of Three Methods of Positioning Region of Interest for ADC Measurements at Diffusion-weighted MR Imaging. Radiology 2017; 282: 418-428 doi:10.1148/radiol.2016151908
  • 24 Bauerle T, Seyler L, Munter M. et al. Diffusion-weighted imaging in rectal carcinoma patients without and after chemoradiotherapy: a comparative study with histology. Eur J Radiol 2013; 82: 444-452 doi:10.1016/j.ejrad.2012.10.012
  • 25 Bulens P, Couwenberg A, Haustermans K. et al. Development and validation of an MRI-based model to predict response to chemoradiotherapy for rectal cancer. Radiother Oncol 2018; 126: 437-442 doi:10.1016/j.radonc.2018.01.008
  • 26 Kremser C, Judmaier W, Hein P. et al. Preliminary results on the influence of chemoradiation on apparent diffusion coefficients of primary rectal carcinoma measured by magnetic resonance imaging. Strahlenther Onkol 2003; 179: 641-649 doi:10.1007/s00066–003–1045–9
  • 27 Cerny M, Dunet V, Prior JO. et al. Initial Staging of Locally Advanced Rectal Cancer and Regional Lymph Nodes: Comparison of Diffusion-Weighted MRI With 18F-FDG-PET/CT. Clin Nucl Med 2016; 41: 289-295 doi:10.1097/RLU.0000000000001172
  • 28 Herrmann K, Bundschuh RA, Rosenberg R. et al. Comparison of different SUV-based methods for response prediction to neoadjuvant radiochemotherapy in locally advanced rectal cancer by FDG-PET and MRI. Mol Imaging Biol 2011; 13: 1011-1019 doi:10.1007/s11307–010–0383–0
  • 29 Schmidt S, Dunet V, Koehli M. et al. Diffusion-weighted magnetic resonance imaging in metastatic gastrointestinal stromal tumor (GIST): a pilot study on the assessment of treatment response in comparison with 18F-FDG PET/CT. Acta Radiol 2013; 54: 837-842 doi:10.1177/0284185113485732
  • 30 Krak NC, Boellaard R, Hoekstra OS. et al. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 2005; 32: 294-301 doi:10.1007/s00259–004–1566–1
  • 31 Guerra L, Niespolo R, Di Pisa G. et al. Change in glucose metabolism measured by 18F-FDG PET/CT as a predictor of histopathologic response to neoadjuvant treatment in rectal cancer. Abdom Imaging 2011; 36: 38-45 doi:10.1007/s00261–009–9594–8
  • 32 Kim YC, Lim JS, Keum KC. et al. Comparison of diffusion-weighted MRI and MR volumetry in the evaluation of early treatment outcomes after preoperative chemoradiotherapy for locally advanced rectal cancer. J Magn Reson Imaging 2011; 34: 570-576 doi:10.1002/jmri.22696
  • 33 Liu X. Classification accuracy and cut point selection. Stat Med 2012; 31: 2676-2686 doi:10.1002/sim.4509
  • 34 Lambrecht M, Deroose C, Roels S. et al. The use of FDG-PET/CT and diffusion-weighted magnetic resonance imaging for response prediction before, during and after preoperative chemoradiotherapy for rectal cancer. Acta Oncol 2010; 49: 956-963 doi:10.3109/0284186X.2010.498439
  • 35 Koo PJ, Kim SJ, Chang S. et al. Interim Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography to Predict Pathologic Response to Preoperative Chemoradiotherapy and Prognosis in Patients With Locally Advanced Rectal Cancer. Clin Colorectal Cancer 2016; 15: e213-e219 doi:10.1016/j.clcc.2016.04.002
  • 36 Iannicelli E, Di Pietropaolo M, Pilozzi E. et al. Value of diffusion-weighted MRI and apparent diffusion coefficient measurements for predicting the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy. Abdom Radiol (NY) 2016; 41: 1906-1917 doi:10.1007/s00261–016–0805–9
  • 37 Blazic IM, Campbell NM, Gollub MJ. MRI for evaluation of treatment response in rectal cancer. Br J Radiol 2016; 89: 20150964 doi:10.1259/bjr.20150964
  • 38 Lambregts DM, Beets GL, Maas M. et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 2011; 21: 2567-2574 doi:10.1007/s00330–011–2220–5
  • 39 Schmidt H, Gatidis S, Schwenzer NF. et al. Impact of measurement parameters on apparent diffusion coefficient quantification in diffusion-weighted-magnetic resonance imaging. Invest Radiol 2015; 50: 46-56 doi:10.1097/RLI.0000000000000095
  • 40 Garcia-Aguilar J, Renfro LA, Chow OS. et al. Organ preservation for clinical T2N0 distal rectal cancer using neoadjuvant chemoradiotherapy and local excision (ACOSOG Z6041): results of an open-label, single-arm, multi-institutional, phase 2 trial. The Lancet Oncology 2015; 16: 1537-1546 doi:10.1016/s1470–2045(15)00215–6
  • 41 Maas M, Beets-Tan RG, Lambregts DM. et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 2011; 29: 4633-4640 doi:10.1200/JCO.2011.37.7176
  • 42 Chen YG, Chen MQ, Guo YY. et al. Apparent Diffusion Coefficient Predicts Pathology Complete Response of Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. PLoS One 2016; 11: e0153944 doi:10.1371/journal.pone.0153944
  • 43 Sloothaak DA, Geijsen DE, van Leersum NJ. et al. Optimal time interval between neoadjuvant chemoradiotherapy and surgery for rectal cancer. Br J Surg 2013; 100: 933-939 doi:10.1002/bjs.9112