Hamostaseologie 2017; 37(01): 25-35
DOI: 10.5482/HAMO-16-09-0034
Plenary lecture
Schattauer GmbH

New findings on venous thrombogenesis

Neue Erkenntnisse zur Venenthrombose
James R. Byrnes
1   Department of Pathology and Laboratory Medicine and McAllister Heart Institute, University of North Carolina, Chapel Hill, United States
,
Alisa S. Wolberg
1   Department of Pathology and Laboratory Medicine and McAllister Heart Institute, University of North Carolina, Chapel Hill, United States
› Author Affiliations
Fundings The authors are supported by funding from the National Institutes of Health (R01HL126974 to A.S.W.) and the National Science Foundation (DGE-1144081 to J.R.B.).
Further Information

Korrespondenzadresse

Alisa S. Wolberg, Ph. D.
Department of Pathology and Laboratory Medicine
University of North Carolina at Chapel Hill
819 Brinkhous-Bullitt Building, CB #7525
Chapel Hill, NC 27599–7525
United States
Phone: (919) 962-8943   
Fax: (919) 966-6718   

Publication History

received: 01 September 2016

accepted in revised form: 04 November 2016

Publication Date:
28 December 2017 (online)

 

Summary

Venous thrombosis (VT) is the third most common cause of cardiovascular death worldwide. Complications from VT and pulmonary embolism are the leading cause of lost disability-adjusted life years. Risks include genetic (e.g., non-O blood group, activated protein C resistance, hyperprothrombinemia) and acquired (e.g., age, surgery, cancer, pregnancy, immobilisation, female hormone use) factors. Pathophysiologic mechanisms that promote VT are incompletely understood, but involve abnormalities in blood coagulability, vessel function, and flow (so-called Virchow’s Triad). Epidemiologic studies of humans, animal models, and biochemical and biophysical investigations have revealed contributions from extrinsic, intrinsic, and common pathways of coagulation, endothelial cells, leukocytes, red blood cells, platelets, cell-derived microvesicles, stasis-induced changes in vascular cells, and blood rheology. Knowledge of these mechanisms may yield new therapeutic targets. Characterisation of mechanisms that mediate VT formation and stability, particularly in aging, are needed to advance understanding of VT.


#

Zusammenfassung

Venenthrombosen (VT) sind die dritthäufigste Ursache kardiovaskulärer Todesfälle weltweit. Das Risiko wird durch genetische (z. B. nicht-O-Blutgruppe, aktivierte-Protein-C-Resistenz, Hyperprothrombinämie) und erworbene Faktoren (z. B. Alter, chirurgische Eingriffe, Krebs, Schwangerschaft, Immobilisation, weibliche Hormone, etc.) bestimmt. Die pathophysiologischen Mechanismen sind noch nicht vollständig geklärt. Eine große Rolle spielen dabei jedoch Veränderungen der Blutgerinnung, Gefäßfunktion und Strömungsgeschwindigkeit (sog. Virchow-Trias). Epidemiologische Studien und biochemische bzw. biophysikalische Untersuchungen haben gezeigt, dass an der Entstehung von VT das extrinsische und intrinsische Gerinnungssystem sowie Endothelzellen, Leukozyten, Erythrozyten, Thrombozyten, zelluläre Mikrovesikel, Stase-induzierte Veränderungen der Gefäßzellen und die Fließeigenschaften des Bluts beteiligt sind. Um die Entstehung der VT besser zu verstehen – insbesondere im Alter – und möglicherweise neue therapeutische Zielstrukturen zu identifizieren, ist es wichtig, die zugrundeliegenden Mechanismen der VT zu charakterisieren.


#

 


#

Conflict of interest

The authors declare that there is no conflict of interest.

  • References

  • 1 Wolberg AS, Rosendaal FR, Weitz JI. et al. Venous thrombosis. Nature Rev Dis Prim 2015; 01: 1-17.
  • 2 ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to the global disease burden. Journal of Thromb Haemost 2014; 12 (10) 1580-1590.
  • 3 Silverstein MD, Heit JA, Mohr DN. et al. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Int Med 1998; 158 (06) 585-593.
  • 4 Diaz JA, Obi AT, Myers Jr DD. et al. Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 2012; 32 (03) 556-562.
  • 5 Grover SP, Evans CE, Patel AS. et al. Assessment of Venous Thrombosis in Animal Models. Arterioscler Thromb Vasc Biol 2016; 36 (02) 245-252.
  • 6 Safdar H, Cheung KL, Salvatori D. et al. Acute and severe coagulopathy in adult mice following silencing of hepatic antithrombin and protein C production. Blood 2013; 121 (21) 4413-4416.
  • 7 Myers Jr DD. Nonhuman primate models of thrombosis. Thrombos Res 2012; 129 (Suppl. 02) S65-S69.
  • 8 Day SM, Reeve JL, Pedersen B. et al. Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 2005; 105 (01) 192-198.
  • 9 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Experim Med 2012; 209 (04) 819-835.
  • 10 Heestermans M, Salloum-Asfar S, Salvatori D. et al. Role of platelets, neutrophils, and factor XII in spontaneous venous thrombosis in mice. Blood 2016; 127 (21) 2630-2637.
  • 11 van Hylckama AVlieg, Rosendaal FR. High levels of fibrinogen are associated with the risk of deep venous thrombosis mainly in the elderly. J Thrombos Haemost 2003; 01 (12) 2677-2678.
  • 12 Zoller B, Svensson PJ, He X, Dahlback B. Identification of the same factor V gene mutation in 47 out of 50 thrombosis-prone families with inherited resistance to activated protein C. J Clin Invest 1994; 94 (06) 2521-2524.
  • 13 Bertina RM, Koeleman BP, Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369 6475 64-67.
  • 14 Kamphuisen PW, Eikenboom JC, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol 2001; 21 (05) 731-738.
  • 15 Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88 (10) 3698-3703.
  • 16 Pabinger I, Schneider B. Thrombotic risk in hereditary antithrombin III, protein C, or protein S deficiency. A cooperative, retrospective study. Gesellschaft fur Thrombose und Hamostaseforschung (GTH) Study Group on Natural Inhibitors. Arterioscler Thromb Vasc Biol 1996; 16 (06) 742-748.
  • 17 Griffin JH, Evatt B, Zimmerman TS. et al. Deficiency of protein C in congenital thrombotic disease. J Clin Invest 1981; 68 (05) 1370-1373.
  • 18 Tripodi A, Legnani C, Chantarangkul V. et al. High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism. J Thrombos Haemost 2008; 06 (08) 1327-1333.
  • 19 Besser M, Baglin C, Luddington R. et al. High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study. J Thrombos Haemost 2008; 06 (10) 1720-1725.
  • 20 ten Cate-Hoek AJ, Dielis AW, Spronk HM. et al. Thrombin generation in patients after acute deepvein thrombosis. Thromb Haemost 2008; 100 (02) 240-245.
  • 21 Brandts A, van Hylckama AVlieg, Rosing J. et al. The risk of venous thrombosis associated with a high endogenous thrombin potential in the absence and presence of activated protein C. J Thrombos Haemost 2007; 05 (02) 416-418.
  • 22 Kyrle PA, Mannhalter C, Beguin S. et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler Thromb Vasc Biol 1998; 18 (08) 1287-1291.
  • 23 Bauer KA, Humphries S, Smillie B. et al. Prothrombin activation is increased among asymptomatic carriers of the prothrombin G20210A and factor V Arg506Gln mutations. Thromb Haemost 2000; 84 (03) 396-400.
  • 24 Allen GA, Wolberg AS, Oliver JA. et al. Impact of procoagulant concentration on rate, peak and total thrombin generation in a model system. J Thrombos Haemost 2004; 02 (03) 402-413.
  • 25 Butenas S, van’t Veer C, Mann KG. “Normal” thrombin generation. Blood 1999; 94 (07) 2169-2178.
  • 26 Machlus KR, Colby EA, Wu JR. et al. Effects of tissue factor, thrombomodulin and elevated clotting factor levels on thrombin generation in the calibrated automated thrombogram. Thromb Haemost 2009; 102 (05) 936-944.
  • 27 Wolberg AS, Monroe DM, Roberts HR, Hoffman M. Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk. Blood 2003; 101 (08) 3008-3013.
  • 28 Machlus KR, Lin FC, Wolberg AS. Procoagulant activity induced by vascular injury determines contribution of elevated factor VIII to thrombosis and thrombus stability in mice. Blood 2011; 118 (14) 3960-3968.
  • 29 Undas A, Zawilska K, Ciesla-Dul M. et al. Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives. Blood 2009; 114 (19) 4272-4278.
  • 30 Wang X, Smith PL, Hsu M-Y. et al. Effects of factor XI deficiency on ferric-induced vena cava thrombosis in mice. J Thrombos Haemost 2006; 04: 1982-1988.
  • 31 Gailani D, Gruber A. Factor XI as a Therapeutic Target. Arterioscler Thromb Vasc Biol 2016; 36 (07) 1316-1322.
  • 32 Aleman MM, Walton BL, Byrnes JR. et al. Elevated prothrombin promotes venous, but not arterial, thrombosis in mice. Arterioscler Thromb Vasc Biol 2013; 33 (08) 1829-1836.
  • 33 Cooley BC, Chen CY, Schmeling G. Increased venous versus arterial thrombosis in the Factor V Leiden mouse. Thrombos Res 2007; 119 (06) 747-751.
  • 34 Miesbach W, Scharrer I, Henschen A. et al. Inherited dysfibrinogenemia: clinical phenotypes associated with five different fibrinogen structure defects. Blood Coag Fibrinol 2010; 21 (01) 35-40.
  • 35 Ramanathan R, Gram J, Feddersen S. et al. Dusart Syndrome in a Scandinavian family characterized by arterial and venous thrombosis at young age. Scand J Clin Lab Invest 2013; 73 (07) 585-590.
  • 36 Machlus KR, Cardenas JC, Church FC, Wolberg AS. Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice. Blood 2011; 117 (18) 4953-4963.
  • 37 Hoffman M. Alterations of fibrinogen structure in human disease. Cardiovasc Haematol Agents Med Chem 2008; 06 (03) 206-211.
  • 38 Meltzer ME, Lisman T, de Groot PG. et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 2010; 116 (01) 113-121.
  • 39 Aleman MM, Byrnes JR, Wang JG. et al. Factor XIII activity mediates red blood cell retention in venous thrombi. J Clin Invest 2014; 124 (08) 3590-3600.
  • 40 Byrnes JR, Wilson C, Boutelle AM. et al. The interaction between fibrinogen and zymogen FXIIIA2B2 is mediated by fibrinogen residues γ390-396 and the FXIII-B subunits. Blood 2016; 128 (15) 1969-1978.
  • 41 Byrnes JR, Wolberg AS. Newly-Recognized Roles of Factor XIII in Thrombosis. Sem Thromb Haemost 2016; 42 (04) 445-454.
  • 42 Hanna M. Congenital deficiency of factor 13: report of a family from Newfoundland with associated mild deficiency of factor XII. Pediatrics 1970; 46 (04) 611-619.
  • 43 Byrnes JR, Duval C, Wang Y. et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood 2015; 126 (16) 1940-1948.
  • 44 Ryan EA, Mockros LF, Stern AM, Lorand L. Influence of a natural and a synthetic inhibitor of factor XIIIa on fibrin clot rheology. Biophys J 1999; 77 (05) 2827-2836.
  • 45 Standeven KF, Carter AM, Grant PJ. et al. Functional analysis of fibrin γ-chain cross-linking by activated factor XIII: determination of a crosslinking pattern that maximizes clot stiffness. Blood 2007; 110 (03) 902-907.
  • 46 Helms CC, Ariens RA, Uitte Sde Willige. et al. α-α cross-links increase fibrin fiber elasticity and stiffness. Biophys J 2012; 102 (01) 168-75.
  • 47 Duval C, Allan P, Connell SD. et al. Roles of fibrin αand γ-chain specific cross-linking by FXIIIa in fibrin structure and function. Thromb Haemost 2014; 111 (05) 842-850.
  • 48 van Gelder JM, Nair CH, Dhall DP. The significance of red cell surface area to the permeability of fibrin network. Biorheology 1994; 31 (03) 259-275.
  • 49 Wohner N, Sotonyi P, Machovich R. et al. Lytic resistance of fibrin containing red blood cells. Arterioscler Thromb Vasc Biol 2011; 31 (10) 2306-2313.
  • 50 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45.
  • 51 Connolly GC, Khorana AA, Kuderer NM. et al. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thrombos Res 2010; 126 (02) 113-118.
  • 52 Blix K, Jensvoll H, Braekkan SK, Hansen JB. White blood cell count measured prior to cancer development is associated with future risk of venous thromboembolism--the Tromsø study. PloS one 2013; 08 (09) e73447.
  • 53 McGuinness CL, Humphries J, Waltham M. et al. Recruitment of labelled monocytes by experimental venous thrombi. Thromb Haemost 2001; 85 (06) 1018-1024.
  • 54 Zhou J, May L, Liao P. et al. Inferior vena cava ligation rapidly induces tissue factor expression and venous thrombosis in rats. Arterioscler Thromb Vasc Biol 2009; 29 (06) 863-869.
  • 55 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 2010; 107 (36) 15880-15885.
  • 56 Savchenko AS, Martinod K, Seidman MA. et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thrombos Haemost 2014; 12 (06) 860-870.
  • 57 Kannemeier C, Shibamiya A, Nakazawa F. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA 2007; 104 (15) 6388-6393.
  • 58 Petersen LC, Bjorn SE, Nordfang O. Effect of leukocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost 1992; 67 (05) 537-541.
  • 59 Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T, Hansen JB. haematocrit and risk of venous thromboembolism in a general population. The Tromsø study. Haematologica 2010; 95 (02) 270-275.
  • 60 Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Seminars in Thromb Haemost 2003; 29 (05) 435-450.
  • 61 Rubin O, Delobel J, Prudent M. et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion 2013; 53 (08) 1744-1754.
  • 62 Whelihan MF, Zachary V, Orfeo T, Mann KG. Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation. Blood 2012; 120 (18) 3837-3845.
  • 63 Peyrou V, Lormeau JC, Herault JP. et al. Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost 1999; 81 (03) 400-406.
  • 64 Brass LF, Diamond SL. Transport physics and biorheology in the setting of haemostasis and thrombosis. J Thrombos Haemost 2016; 14 (05) 906-917.
  • 65 Cines DB, Lebedeva T, Nagaswami C. et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014; 123 (10) 1596-1603.
  • 66 Jensvoll H, Blix K, Braekkan SK, Hansen JB. Platelet count measured prior to cancer development is a risk factor for future symptomatic venous thromboembolism: the Tromsø Study. PloS one 2014; 09 (03) e92011.
  • 67 Zakai NA, Wright J, Cushman M. Risk factors for venous thrombosis in medical inpatients: validation of a thrombosis risk score. J Thrombos Haemost 2004; 02 (12) 2156-2161.
  • 68 Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005; 104 (12) 2822-2829.
  • 69 Castellucci LA, Cameron C, Le Gal G. et al. Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: systematic review and network meta-analysis. BMJ 2013; 347: f5133.
  • 70 Simes J, Becattini C, Agnelli G. et al. Aspirin for the prevention of recurrent venous thromboembolism: the INSPIRE collaboration. Circulation 2014; 130 (13) 1062-1071.
  • 71 Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2014; 34 (01) 54-62.
  • 72 Brill A, Fuchs TA, Chauhan AK. et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (04) 1400-1407.
  • 73 Yang J, Zhou X, Fan X. et al. mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation. Blood 2016; 128 (05) 615-624.
  • 74 Aleman MM, Gardiner C, Harrison P, Wolberg AS. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thrombos Haemost 2011; 09 (11) 2251-2261.
  • 75 Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R. et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thrombos Haemost 2012; 10 (07) 1355-1362.
  • 76 Ramacciotti E, Hawley AE, Farris DM. et al. Leukocyte- and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis. Thromb Haemost 2009; 101 (04) 748-754.
  • 77 Khorana AA, Francis CW, Menzies KE. et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thrombos Haemost 2008; 06 (11) 1983-1985.
  • 78 Wang JG, Geddings JE, Aleman MM. et al. tumourderived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 2012; 119 (23) 5543-5552.
  • 79 Thomas GM, Panicot-Dubois L, Lacroix R. et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Experim Med 2009; 206 (09) 1913-1927.
  • 80 Brooks EG, Trotman W, Wadsworth MP. et al. Valves of the deep venous system: an overlooked risk factor. Blood 2009; 114 (06) 1276-1279.
  • 81 Rodriguez AL, Wojcik BM, Wrobleski SK. et al. Statins, inflammation and deep vein thrombosis: a systematic review. J Thrombos Thrombol 2012; 33 (04) 371-382.
  • 82 DeRoo EP, Wrobleski SK, Shea EM. et al. The role of galectin-3 and galectin-3-binding protein in venous thrombosis. Blood 2015; 125 (11) 1813-1821.
  • 83 Herbert JM, Savi P, Laplace MC, Lale A. IL-4 inhibits LPS-, IL-1 beta- and TNF alpha-induced expression of tissue factor in endothelial cells and monocytes. FEBS Letters 1992; 310 (01) 31-33.
  • 84 Campbell RA, Overmyer KA, Selzman CH. et al. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood 2009; 114 (23) 4886-4896.
  • 85 Silverman MD, Manolopoulos VG, Unsworth BR, Lelkes PI. Tissue factor expression is differentially modulated by cyclic mechanical strain in various human endothelial cells. Blood Coag Fibrinol 1996; 07 (03) 281-288.
  • 86 Preston RA, Jy W, Jimenez JJ. et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003; 41 (02) 211-217.
  • 87 van Hinsbergh VW. Endothelium - role in regulation of coagulation and inflammation. Sem Immunopathol 2012; 34 (01) 93-106.
  • 88 Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest 2012; 122 (07) 2331-2336.
  • 89 Myers Jr. DD, Schaub R, Wrobleski SK. et al. P-selectin antagonism causes dose-dependent venous thrombosis inhibition. Thromb Haemost 2001; 85 (03) 423-429.
  • 90 Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 2004; 10 (04) 171-178.
  • 91 Wakefield TW, Strieter RM, Downing LJ. et al. P-selectin and TNF inhibition reduce venous thrombosis inflammation. J Surg Res 1996; 64 (01) 26-31.
  • 92 Warlow C, Ogston D, Douglas AS. Deep venous thrombosis of the legs after strokes: Part 2-Natural history. BMJ 1976; 01 6019 1181-1183.
  • 93 Sevitt S. The structure and growth of valve-pocket thrombi in femoral veins. J Clin Pathol 1974; 27 (07) 517-528.
  • 94 Hamer JD, Malone PC, Silver IA. The PO2 in venous valve pockets: its possible bearing on thrombogenesis. Brit J Surg 1981; 68 (03) 166-170.
  • 95 Michiels C, Arnould T, Remacle J. Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 2000; 1497 (01) 1-10.
  • 96 Wang C, Baker BM, Chen CS, Schwartz MA. Endothelial cell sensing of flow direction. Arterioscler Thromb Vasc Biol 2013; 33 (09) 2130-2136.
  • 97 Lin Z, Kumar A, SenBanerjee S. et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circul Res 2005; 96 (05) e48-57.
  • 98 Lin Z, Hamik A, Jain R. et al. Kruppel-like factor 2 inhibits protease activated receptor-1 expression and thrombin-mediated endothelial activation. Arterioscler Thromb Vasc Biol 2006; 26 (05) 1185-1189.
  • 99 Parmar KM, Larman HB, Dai G. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2006; 116 (01) 49-58.
  • 100 Glynn RJ, Danielson E, Fonseca FA. et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med 2009; 360 (18) 1851-1861.
  • 101 Violi F, Calvieri C, Ferro D, Pignatelli P. Statins as antithrombotic drugs. Circulation 2013; 127 (02) 251-257.
  • 102 Owens 3rd AP, Passam FH, Antoniak S. et al. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 2012; 122 (02) 558-568.
  • 103 Neeves KB, Illing DA, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J 2010; 98 (07) 1344-1352.
  • 104 Campbell RA, Aleman M, Gray LD. et al. Flow profoundly influences fibrin network structure: implications for fibrin formation and clot stability in haemostasis. Thromb Haemost 2010; 104 (06) 1281-1284.
  • 105 Weisel JW, Litvinov RI. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Haematol Agents Med Chem 2008; 06 (03) 161-180.
  • 106 Bucay I, O’Brien 3rd ET, Wulfe SD. et al. Physical determinants of fibrinolysis in single fibrin fibers. PloS one 2015; 10 (02) e0116350.
  • 107 Henke PK, Wakefield T. Thrombus resolution and vein wall injury: dependence on chemokines and leukocytes. Thrombos Res 2009; 123 (Suppl. 04) S72-S78.
  • 108 Altmann J, Sharma S, Lang IM. Advances in our understanding of mechanisms of venous thrombus resolution. Exp Rev Haematol 2016; 09 (01) 69-78.

Korrespondenzadresse

Alisa S. Wolberg, Ph. D.
Department of Pathology and Laboratory Medicine
University of North Carolina at Chapel Hill
819 Brinkhous-Bullitt Building, CB #7525
Chapel Hill, NC 27599–7525
United States
Phone: (919) 962-8943   
Fax: (919) 966-6718   

  • References

  • 1 Wolberg AS, Rosendaal FR, Weitz JI. et al. Venous thrombosis. Nature Rev Dis Prim 2015; 01: 1-17.
  • 2 ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to the global disease burden. Journal of Thromb Haemost 2014; 12 (10) 1580-1590.
  • 3 Silverstein MD, Heit JA, Mohr DN. et al. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Int Med 1998; 158 (06) 585-593.
  • 4 Diaz JA, Obi AT, Myers Jr DD. et al. Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 2012; 32 (03) 556-562.
  • 5 Grover SP, Evans CE, Patel AS. et al. Assessment of Venous Thrombosis in Animal Models. Arterioscler Thromb Vasc Biol 2016; 36 (02) 245-252.
  • 6 Safdar H, Cheung KL, Salvatori D. et al. Acute and severe coagulopathy in adult mice following silencing of hepatic antithrombin and protein C production. Blood 2013; 121 (21) 4413-4416.
  • 7 Myers Jr DD. Nonhuman primate models of thrombosis. Thrombos Res 2012; 129 (Suppl. 02) S65-S69.
  • 8 Day SM, Reeve JL, Pedersen B. et al. Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 2005; 105 (01) 192-198.
  • 9 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Experim Med 2012; 209 (04) 819-835.
  • 10 Heestermans M, Salloum-Asfar S, Salvatori D. et al. Role of platelets, neutrophils, and factor XII in spontaneous venous thrombosis in mice. Blood 2016; 127 (21) 2630-2637.
  • 11 van Hylckama AVlieg, Rosendaal FR. High levels of fibrinogen are associated with the risk of deep venous thrombosis mainly in the elderly. J Thrombos Haemost 2003; 01 (12) 2677-2678.
  • 12 Zoller B, Svensson PJ, He X, Dahlback B. Identification of the same factor V gene mutation in 47 out of 50 thrombosis-prone families with inherited resistance to activated protein C. J Clin Invest 1994; 94 (06) 2521-2524.
  • 13 Bertina RM, Koeleman BP, Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369 6475 64-67.
  • 14 Kamphuisen PW, Eikenboom JC, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol 2001; 21 (05) 731-738.
  • 15 Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88 (10) 3698-3703.
  • 16 Pabinger I, Schneider B. Thrombotic risk in hereditary antithrombin III, protein C, or protein S deficiency. A cooperative, retrospective study. Gesellschaft fur Thrombose und Hamostaseforschung (GTH) Study Group on Natural Inhibitors. Arterioscler Thromb Vasc Biol 1996; 16 (06) 742-748.
  • 17 Griffin JH, Evatt B, Zimmerman TS. et al. Deficiency of protein C in congenital thrombotic disease. J Clin Invest 1981; 68 (05) 1370-1373.
  • 18 Tripodi A, Legnani C, Chantarangkul V. et al. High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism. J Thrombos Haemost 2008; 06 (08) 1327-1333.
  • 19 Besser M, Baglin C, Luddington R. et al. High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study. J Thrombos Haemost 2008; 06 (10) 1720-1725.
  • 20 ten Cate-Hoek AJ, Dielis AW, Spronk HM. et al. Thrombin generation in patients after acute deepvein thrombosis. Thromb Haemost 2008; 100 (02) 240-245.
  • 21 Brandts A, van Hylckama AVlieg, Rosing J. et al. The risk of venous thrombosis associated with a high endogenous thrombin potential in the absence and presence of activated protein C. J Thrombos Haemost 2007; 05 (02) 416-418.
  • 22 Kyrle PA, Mannhalter C, Beguin S. et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler Thromb Vasc Biol 1998; 18 (08) 1287-1291.
  • 23 Bauer KA, Humphries S, Smillie B. et al. Prothrombin activation is increased among asymptomatic carriers of the prothrombin G20210A and factor V Arg506Gln mutations. Thromb Haemost 2000; 84 (03) 396-400.
  • 24 Allen GA, Wolberg AS, Oliver JA. et al. Impact of procoagulant concentration on rate, peak and total thrombin generation in a model system. J Thrombos Haemost 2004; 02 (03) 402-413.
  • 25 Butenas S, van’t Veer C, Mann KG. “Normal” thrombin generation. Blood 1999; 94 (07) 2169-2178.
  • 26 Machlus KR, Colby EA, Wu JR. et al. Effects of tissue factor, thrombomodulin and elevated clotting factor levels on thrombin generation in the calibrated automated thrombogram. Thromb Haemost 2009; 102 (05) 936-944.
  • 27 Wolberg AS, Monroe DM, Roberts HR, Hoffman M. Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk. Blood 2003; 101 (08) 3008-3013.
  • 28 Machlus KR, Lin FC, Wolberg AS. Procoagulant activity induced by vascular injury determines contribution of elevated factor VIII to thrombosis and thrombus stability in mice. Blood 2011; 118 (14) 3960-3968.
  • 29 Undas A, Zawilska K, Ciesla-Dul M. et al. Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives. Blood 2009; 114 (19) 4272-4278.
  • 30 Wang X, Smith PL, Hsu M-Y. et al. Effects of factor XI deficiency on ferric-induced vena cava thrombosis in mice. J Thrombos Haemost 2006; 04: 1982-1988.
  • 31 Gailani D, Gruber A. Factor XI as a Therapeutic Target. Arterioscler Thromb Vasc Biol 2016; 36 (07) 1316-1322.
  • 32 Aleman MM, Walton BL, Byrnes JR. et al. Elevated prothrombin promotes venous, but not arterial, thrombosis in mice. Arterioscler Thromb Vasc Biol 2013; 33 (08) 1829-1836.
  • 33 Cooley BC, Chen CY, Schmeling G. Increased venous versus arterial thrombosis in the Factor V Leiden mouse. Thrombos Res 2007; 119 (06) 747-751.
  • 34 Miesbach W, Scharrer I, Henschen A. et al. Inherited dysfibrinogenemia: clinical phenotypes associated with five different fibrinogen structure defects. Blood Coag Fibrinol 2010; 21 (01) 35-40.
  • 35 Ramanathan R, Gram J, Feddersen S. et al. Dusart Syndrome in a Scandinavian family characterized by arterial and venous thrombosis at young age. Scand J Clin Lab Invest 2013; 73 (07) 585-590.
  • 36 Machlus KR, Cardenas JC, Church FC, Wolberg AS. Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice. Blood 2011; 117 (18) 4953-4963.
  • 37 Hoffman M. Alterations of fibrinogen structure in human disease. Cardiovasc Haematol Agents Med Chem 2008; 06 (03) 206-211.
  • 38 Meltzer ME, Lisman T, de Groot PG. et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 2010; 116 (01) 113-121.
  • 39 Aleman MM, Byrnes JR, Wang JG. et al. Factor XIII activity mediates red blood cell retention in venous thrombi. J Clin Invest 2014; 124 (08) 3590-3600.
  • 40 Byrnes JR, Wilson C, Boutelle AM. et al. The interaction between fibrinogen and zymogen FXIIIA2B2 is mediated by fibrinogen residues γ390-396 and the FXIII-B subunits. Blood 2016; 128 (15) 1969-1978.
  • 41 Byrnes JR, Wolberg AS. Newly-Recognized Roles of Factor XIII in Thrombosis. Sem Thromb Haemost 2016; 42 (04) 445-454.
  • 42 Hanna M. Congenital deficiency of factor 13: report of a family from Newfoundland with associated mild deficiency of factor XII. Pediatrics 1970; 46 (04) 611-619.
  • 43 Byrnes JR, Duval C, Wang Y. et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood 2015; 126 (16) 1940-1948.
  • 44 Ryan EA, Mockros LF, Stern AM, Lorand L. Influence of a natural and a synthetic inhibitor of factor XIIIa on fibrin clot rheology. Biophys J 1999; 77 (05) 2827-2836.
  • 45 Standeven KF, Carter AM, Grant PJ. et al. Functional analysis of fibrin γ-chain cross-linking by activated factor XIII: determination of a crosslinking pattern that maximizes clot stiffness. Blood 2007; 110 (03) 902-907.
  • 46 Helms CC, Ariens RA, Uitte Sde Willige. et al. α-α cross-links increase fibrin fiber elasticity and stiffness. Biophys J 2012; 102 (01) 168-75.
  • 47 Duval C, Allan P, Connell SD. et al. Roles of fibrin αand γ-chain specific cross-linking by FXIIIa in fibrin structure and function. Thromb Haemost 2014; 111 (05) 842-850.
  • 48 van Gelder JM, Nair CH, Dhall DP. The significance of red cell surface area to the permeability of fibrin network. Biorheology 1994; 31 (03) 259-275.
  • 49 Wohner N, Sotonyi P, Machovich R. et al. Lytic resistance of fibrin containing red blood cells. Arterioscler Thromb Vasc Biol 2011; 31 (10) 2306-2313.
  • 50 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45.
  • 51 Connolly GC, Khorana AA, Kuderer NM. et al. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thrombos Res 2010; 126 (02) 113-118.
  • 52 Blix K, Jensvoll H, Braekkan SK, Hansen JB. White blood cell count measured prior to cancer development is associated with future risk of venous thromboembolism--the Tromsø study. PloS one 2013; 08 (09) e73447.
  • 53 McGuinness CL, Humphries J, Waltham M. et al. Recruitment of labelled monocytes by experimental venous thrombi. Thromb Haemost 2001; 85 (06) 1018-1024.
  • 54 Zhou J, May L, Liao P. et al. Inferior vena cava ligation rapidly induces tissue factor expression and venous thrombosis in rats. Arterioscler Thromb Vasc Biol 2009; 29 (06) 863-869.
  • 55 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 2010; 107 (36) 15880-15885.
  • 56 Savchenko AS, Martinod K, Seidman MA. et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thrombos Haemost 2014; 12 (06) 860-870.
  • 57 Kannemeier C, Shibamiya A, Nakazawa F. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA 2007; 104 (15) 6388-6393.
  • 58 Petersen LC, Bjorn SE, Nordfang O. Effect of leukocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost 1992; 67 (05) 537-541.
  • 59 Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T, Hansen JB. haematocrit and risk of venous thromboembolism in a general population. The Tromsø study. Haematologica 2010; 95 (02) 270-275.
  • 60 Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Seminars in Thromb Haemost 2003; 29 (05) 435-450.
  • 61 Rubin O, Delobel J, Prudent M. et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion 2013; 53 (08) 1744-1754.
  • 62 Whelihan MF, Zachary V, Orfeo T, Mann KG. Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation. Blood 2012; 120 (18) 3837-3845.
  • 63 Peyrou V, Lormeau JC, Herault JP. et al. Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost 1999; 81 (03) 400-406.
  • 64 Brass LF, Diamond SL. Transport physics and biorheology in the setting of haemostasis and thrombosis. J Thrombos Haemost 2016; 14 (05) 906-917.
  • 65 Cines DB, Lebedeva T, Nagaswami C. et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014; 123 (10) 1596-1603.
  • 66 Jensvoll H, Blix K, Braekkan SK, Hansen JB. Platelet count measured prior to cancer development is a risk factor for future symptomatic venous thromboembolism: the Tromsø Study. PloS one 2014; 09 (03) e92011.
  • 67 Zakai NA, Wright J, Cushman M. Risk factors for venous thrombosis in medical inpatients: validation of a thrombosis risk score. J Thrombos Haemost 2004; 02 (12) 2156-2161.
  • 68 Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005; 104 (12) 2822-2829.
  • 69 Castellucci LA, Cameron C, Le Gal G. et al. Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: systematic review and network meta-analysis. BMJ 2013; 347: f5133.
  • 70 Simes J, Becattini C, Agnelli G. et al. Aspirin for the prevention of recurrent venous thromboembolism: the INSPIRE collaboration. Circulation 2014; 130 (13) 1062-1071.
  • 71 Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2014; 34 (01) 54-62.
  • 72 Brill A, Fuchs TA, Chauhan AK. et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (04) 1400-1407.
  • 73 Yang J, Zhou X, Fan X. et al. mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation. Blood 2016; 128 (05) 615-624.
  • 74 Aleman MM, Gardiner C, Harrison P, Wolberg AS. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thrombos Haemost 2011; 09 (11) 2251-2261.
  • 75 Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R. et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thrombos Haemost 2012; 10 (07) 1355-1362.
  • 76 Ramacciotti E, Hawley AE, Farris DM. et al. Leukocyte- and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis. Thromb Haemost 2009; 101 (04) 748-754.
  • 77 Khorana AA, Francis CW, Menzies KE. et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thrombos Haemost 2008; 06 (11) 1983-1985.
  • 78 Wang JG, Geddings JE, Aleman MM. et al. tumourderived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 2012; 119 (23) 5543-5552.
  • 79 Thomas GM, Panicot-Dubois L, Lacroix R. et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Experim Med 2009; 206 (09) 1913-1927.
  • 80 Brooks EG, Trotman W, Wadsworth MP. et al. Valves of the deep venous system: an overlooked risk factor. Blood 2009; 114 (06) 1276-1279.
  • 81 Rodriguez AL, Wojcik BM, Wrobleski SK. et al. Statins, inflammation and deep vein thrombosis: a systematic review. J Thrombos Thrombol 2012; 33 (04) 371-382.
  • 82 DeRoo EP, Wrobleski SK, Shea EM. et al. The role of galectin-3 and galectin-3-binding protein in venous thrombosis. Blood 2015; 125 (11) 1813-1821.
  • 83 Herbert JM, Savi P, Laplace MC, Lale A. IL-4 inhibits LPS-, IL-1 beta- and TNF alpha-induced expression of tissue factor in endothelial cells and monocytes. FEBS Letters 1992; 310 (01) 31-33.
  • 84 Campbell RA, Overmyer KA, Selzman CH. et al. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood 2009; 114 (23) 4886-4896.
  • 85 Silverman MD, Manolopoulos VG, Unsworth BR, Lelkes PI. Tissue factor expression is differentially modulated by cyclic mechanical strain in various human endothelial cells. Blood Coag Fibrinol 1996; 07 (03) 281-288.
  • 86 Preston RA, Jy W, Jimenez JJ. et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003; 41 (02) 211-217.
  • 87 van Hinsbergh VW. Endothelium - role in regulation of coagulation and inflammation. Sem Immunopathol 2012; 34 (01) 93-106.
  • 88 Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest 2012; 122 (07) 2331-2336.
  • 89 Myers Jr. DD, Schaub R, Wrobleski SK. et al. P-selectin antagonism causes dose-dependent venous thrombosis inhibition. Thromb Haemost 2001; 85 (03) 423-429.
  • 90 Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 2004; 10 (04) 171-178.
  • 91 Wakefield TW, Strieter RM, Downing LJ. et al. P-selectin and TNF inhibition reduce venous thrombosis inflammation. J Surg Res 1996; 64 (01) 26-31.
  • 92 Warlow C, Ogston D, Douglas AS. Deep venous thrombosis of the legs after strokes: Part 2-Natural history. BMJ 1976; 01 6019 1181-1183.
  • 93 Sevitt S. The structure and growth of valve-pocket thrombi in femoral veins. J Clin Pathol 1974; 27 (07) 517-528.
  • 94 Hamer JD, Malone PC, Silver IA. The PO2 in venous valve pockets: its possible bearing on thrombogenesis. Brit J Surg 1981; 68 (03) 166-170.
  • 95 Michiels C, Arnould T, Remacle J. Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 2000; 1497 (01) 1-10.
  • 96 Wang C, Baker BM, Chen CS, Schwartz MA. Endothelial cell sensing of flow direction. Arterioscler Thromb Vasc Biol 2013; 33 (09) 2130-2136.
  • 97 Lin Z, Kumar A, SenBanerjee S. et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circul Res 2005; 96 (05) e48-57.
  • 98 Lin Z, Hamik A, Jain R. et al. Kruppel-like factor 2 inhibits protease activated receptor-1 expression and thrombin-mediated endothelial activation. Arterioscler Thromb Vasc Biol 2006; 26 (05) 1185-1189.
  • 99 Parmar KM, Larman HB, Dai G. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2006; 116 (01) 49-58.
  • 100 Glynn RJ, Danielson E, Fonseca FA. et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med 2009; 360 (18) 1851-1861.
  • 101 Violi F, Calvieri C, Ferro D, Pignatelli P. Statins as antithrombotic drugs. Circulation 2013; 127 (02) 251-257.
  • 102 Owens 3rd AP, Passam FH, Antoniak S. et al. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 2012; 122 (02) 558-568.
  • 103 Neeves KB, Illing DA, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J 2010; 98 (07) 1344-1352.
  • 104 Campbell RA, Aleman M, Gray LD. et al. Flow profoundly influences fibrin network structure: implications for fibrin formation and clot stability in haemostasis. Thromb Haemost 2010; 104 (06) 1281-1284.
  • 105 Weisel JW, Litvinov RI. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Haematol Agents Med Chem 2008; 06 (03) 161-180.
  • 106 Bucay I, O’Brien 3rd ET, Wulfe SD. et al. Physical determinants of fibrinolysis in single fibrin fibers. PloS one 2015; 10 (02) e0116350.
  • 107 Henke PK, Wakefield T. Thrombus resolution and vein wall injury: dependence on chemokines and leukocytes. Thrombos Res 2009; 123 (Suppl. 04) S72-S78.
  • 108 Altmann J, Sharma S, Lang IM. Advances in our understanding of mechanisms of venous thrombus resolution. Exp Rev Haematol 2016; 09 (01) 69-78.