Hamostaseologie 2015; 35(03): 211-224
DOI: 10.5482/HAMO-14-12-0081
Review
Schattauer GmbH

Interaction of von Willebrand factor with platelets and the vessel wall

Wechselwirkuneng zwischen von Willebrand-Faktor, Blutplättchen und Gefäßwand
Z. M. Ruggeri
1   Department of Molecular and Experimental Medicine, Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, California, USA
,
G. L. Mendolicchio
2   Laboratorio di Ricerca Emostasi e Trombosi, International Center for Global Prevention of Cardiovascular Diseases, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
› Author Affiliations
Further Information

Publication History

received: 06 December 2014

accepted: 09 January 2014

Publication Date:
28 December 2017 (online)

Summary

The initiation of thrombus formation at sites of vascular injury to secure haemostasis after tissue trauma requires the interaction of surface-exposed von Willebrand factor (VWF) with its primary platelet receptor, the glycoprotein (GP) Ib-IX-V complex. As an insoluble component of the extracellular matrix (ECM) of endothelial cells, VWF can directly initiate platelet adhesion. Circulating plasma VWF en-hances matrix VWF activity by binding to structures that become exposed to flowing blood, notably collagen type I and III in deeper layers of the vessel along with microfibrillar collagen type VI in the sub endothelium. Moreover, plasma VWF is required to support platelet-to-platelet adhesion – i. e. aggregation – which promotes thrombus growth and consolidation. For these reasons, understanding how plasma VWF interaction with platelet receptors is regulated, particularly any distinctive features of GPIb binding to soluble as opposed to immobilized VWF, is of paramount importance in vascular biology.

This brief review will highlight knowledge acquired and key problems that remain to be solved to elucidate fully the role of VWF in normal haemostasis and pathological thrombosis.

Zusammenfassung

Zu Beginn der Thrombusbildung in verletzten Gefäßabschnitten muss zur Sicherung der Hämostase nach einem Gewebetrauma der oberflächenexponierte von-Willebrand-Faktor (VWF) mit seinem primären Thrombozytenrezeptor, dem Glykoprotein(GP)-Ib-IXV-Komplex, interagieren. Als unlöslicher Bestandteil der extrazellulären Matrix (EZM) der Endothelzellen kann VWF die Thrombozytenadhäsion direkt auslösen. Im Plasma zirkulierender VWF erhöht die Aktivität des Matrix-VWF durch Bindung an Strukturen, die dem Blutstrom ausgesetzt werden, vor allem Kollagen I und III in tieferen Gefäßwandschichten sowie subendotheliales Kollagen VI der Mikrofibrillen. Außerdem wird der Plasma-VWF für die Adhäsion der Thrombozyten untereinander – d. h. die Aggregation – benötigt, durch die Wachstum und Konsolidierung des Thrombus gefördert werden. Deshalb ist es in der Gefäßbiologie wichtig zu verstehen, wie die Wechselwirkung zwischen Plasma-VWF und Plättchenrezeptoren reguliert wird, besonders alle Merkmale der Bindung von GPIb an löslichen oder gebundenen VWF.

Diese kurze Übersicht beleuchtet die Erkenntnisse und Probleme, die zu lösen sind, um die Rolle des VWF bei der normalen Hämostase und bei pathologischen Thrombosen gänzlich aufzuklären.

 
  • References

  • 1 Ruggeri ZM. Von Willebrand factor. Curr Opin Hematol 2003; 10: 142-149.
  • 2 Springer TA. Biology and physics of von Willebrand factor concatamers. J Thromb Haemost 2011; 09 (Suppl. 01) 130-143.
  • 3 Bloom AL, Peake IR, Giddings JD. et al. Endothelial cells and factor-VIII-related protein. Lancet 1976; i: 46.
  • 4 Jaffe EA, Hoyer LW, Nachman RL. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci USA 1974; 71: 1906-1909.
  • 5 Wagner DD, Marder VJ. Biosynthesis of von Willebrand protein by human endothelial cells. J Cell Biol 1984; 99: 2123-2130.
  • 6 Sadler JE. von Willebrand factor assembly and secretion. J Thromb Haemost 2009; 07 (Suppl. 01) 24-27.
  • 7 Nachman RL, Levine R, Jaffe EA. Synthesis of Factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest 1977; 60: 914-921.
  • 8 Sporn LA, Chavin SI, Marder VJ, Wagner DD. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 1985; 76: 1102-1106.
  • 9 Sadler JE, Shelton-Inloes BB, Sorace JM, Titani K. Cloning of cDNA and genomic DNA for human von Willebrand factor. Cold Spring Harbor Symp Quant Biol 1986; 51: 515-523.
  • 10 Ginsburg D, Handin RI, Bonthron DT. et al. Human von Willebrand factor. Science 1985; 228: 1401-1406.
  • 11 Lynch DC, Zimmerman TS, Collins CJ. et al. Molecular cloning of cDNA for human von Willebrand factor. Cell 1985; 41: 49-56.
  • 12 Verweij CL, Diergaarde PJ, Hart M, Pannekoek H. Full-length von Willebrand factor cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J 1986; 05: 1839-1847.
  • 13 Ruggeri ZM, Zimmerman TS. The complex multimeric composition of factor VIII/von Willebrand factor. Blood 1981; 57: 1140-1143.
  • 14 Dent JA, Galbusera M, Ruggeri ZM. Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit. J Clin Invest 1991; 88: 774-782.
  • 15 Dong JF, Moake JL, Nolasco L. et al. ADAMTS-13 rapidly cleaves newly secreted ultra-large von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002; 100: 4033-4039.
  • 16 Turner NA, Nolasco L, Ruggeri ZM, Moake JL. Endothelial cell ADAMTS-13 and VWF. Blood 2009; 114: 5102-5111.
  • 17 Turner N, Nolasco L, Moake J. Generation and breakdown of soluble ultralarge von Willebrand factor multimers. Semin Thromb Hemost 2012; 38: 38-46.
  • 18 Moake JL, Turner NA, Stathopoulos NA. et al. Involvement of large plasma von Willebrand factor multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest 1986; 78: 1456-1461.
  • 19 Arya M, Anvari B, Romo GM. et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex. Blood 2002; 99: 3971-3977.
  • 20 Moake JL, Rudy CK, Troll JH. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. New Engl J Med 1982; 307: 1432-1435.
  • 21 Crawley JT, de Groot R, Xiang Y. et al. Unraveling the scissile bond. Blood 2011; 118: 3212-3221.
  • 22 Lopez JA, Dong JF. Cleavage of von Willebrand factor by ADAMTS-13 on endothelial cells. Semin Hematol 2004; 41: 24-33.
  • 23 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413: 488-494.
  • 24 Dent JA, Berkowitz SD, Ware J. et al. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci USA 1990; 87: 6306-6310.
  • 25 Moake JL. Thrombotic microangiopathies. New Engl J Med 2002; 347: 589-600.
  • 26 Donadelli R, Orje JN, Capoferri C. et al. Size regulation of von Willebrand factor-mediated platelet thrombi by ADAMTS13 in flowing blood. Blood 2006; 107: 1943-1950.
  • 27 Nishio K, Anderson PJ, Zheng XL, Sadler JE. Binding of platelet glycoprotein Ibα to von Willebrand factor domain A1 stimulates the cleavage of the adjacent domain A2 by ADAMTS13. Proc Natl Acad Sci USA 2004; 101: 10578-10583.
  • 28 Dong JF. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost 2005; 03: 1710-1716.
  • 29 Weiss HJ. Platelet physiology and abnormalities of platelet function. New Engl J Med 1975; 293: 531-541.
  • 30 Weiss HJ. Platelet physiology and abnormalities of platelet function. New Engl J Med 1975; 293: 580-588.
  • 31 Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007; 100: 1673-1685.
  • 32 Clemetson KJ. Platelets and primary haemostasis. Thromb Res 2012; 129: 220-224.
  • 33 Lusis AJ. Atherosclerosis. Nature 2000; 407: 233-241.
  • 34 Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874.
  • 35 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 08: 1227-1234.
  • 36 Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med 2011; 17: 1423-1436.
  • 37 Chen S, Springer TA. Selectin receptor-ligand bonds. Proc Natl Acad Sci USA 2001; 98: 950-955.
  • 38 Rakshit S, Sivasankar S. Biomechanics of cell adhesion. Phys Chem Chem Phys 2014; 16: 2211-2223.
  • 39 Alon R, Hammer DA, Springer TA. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 1995; 374: 539-542.
  • 40 Ruggeri ZM. Platelet adhesion under flow. Microcirculation 2009; 16: 58-83.
  • 41 Ruggeri ZM, Orje JN, Habermann R. et al. Activation-independent platelet adhe-sion and aggregation under elevated shear stress. Blood 2006; 108: 1903-1910.
  • 42 Mailhac A, Badimon JJ, Fallon JT. et al. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Circulation 1994; 90: 988-996.
  • 43 Siegel JM, Markou CP, Ku DN, Hanson SR. A scaling law for wall shear rate through an arterial stenosis. J Biomech Eng 1994; 116: 446-451.
  • 44 Wootton DM, Markou CP, Hanson SR, Ku DN. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann Biomed Eng 2001; 29: 321-329.
  • 45 Weiss HJ, Turitto VT, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. J Lab Clin Med 1978; 92: 750-764.
  • 46 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-666.
  • 47 Konstantinides S, Ware J, Marchese P. et al. Distinct antithrombotic consequences of platelet glycoprotein Ibα and VI deficiency in a mouse model of arterial throm-bosis. J Thromb Haemost 2006; 04: 2014-2021.
  • 48 Andrews RK, Gardiner EE, Shen Y. et al. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol 2003; 35: 1170-1174.
  • 49 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-297.
  • 50 Fujimura Y, Titani K, Holland LZ. et al. von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 1986; 261: 381-385.
  • 51 Mohri H, Fujimura Y, Shima M. et al. Structure of the von Willebrand factor domain interacting with glycoprotein Ib. J Biol Chem 1988; 263: 17901-17904.
  • 52 Huizinga EG, Tsuji S, Romijn RA. et al. Structures of glycoprotein Ibα and its complex with von Willebrand factor A1 domain. Science 2002; 297: 1176-1179.
  • 53 Mayadas TN, Johnson RC, Rayburn H. et al. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 1993; 74: 541-554.
  • 54 Diacovo TG, Roth SJ, Buccola JM. et al. Neutropil rolling, arrest, and transmigra-tion across activated, surface-adherent platelets via sequential action of P-selectin and the · 2 -integrin CD11b/CD18. Blood 1996; 88: 146-157.
  • 55 Rand JH, Sussman II, Gordon RE. et al. Localization of factor-VIII-related antigen in human vascular subendothelium. Blood 1980; 55: 752-756.
  • 56 Rand JH, Patel ND, Schwartz E. et al. 150-kD von Willebrand factor binding protein extracted from human vascular subendothelium is type VI collagen. J Clin Invest 1991; 88: 253-259.
  • 57 Denis C, Baruch D, Kielty CM. et al. Localization on von Willebrand factor binding domains to endothelial extracellular matrix and to type VI collagen. Atertio Thromb Vasc Biol 1993; 13: 398-406.
  • 58 Sakariassen KS, Bolhuis PA, Sixma JJ. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII/von Willebrand factor bound to the subendothelium. Nature 1979; 279: 636-638.
  • 59 Stel HV, Sakariassen KS, de Groot PG. et al. Von Willebrand factor in the vessel wall mediates platelet adherence. Blood 1985; 65: 85-90.
  • 60 Turitto VT, Weiss HJ, Zimmerman TS, Sussman II. Factor VIII/von Willebrand factor in subendothelium mediates platelet adhesion. Blood 1985; 65: 823-831.
  • 61 Baruch D, Denis C, Marteaux C. et al. Role of von Willebrand factor associated to extracellular matrices in platelet adhesion. Blood 1991; 77: 519-527.
  • 62 Yamamoto K, de Waard V, Fearns C, Loskutoff DJ. Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 1998; 92: 2791-2801.
  • 63 Smith JM, Meinkoth JH, Hochstatter T, Meyers KM. Differential distribution of von Willebrand factor in canine vascular endothelium. Am J Vet Res 1996; 57: 750-755.
  • 64 Rand JH, Badimon L, Gordon RE. et al. Distribution of von Willebrand factor in porcine intima varies with blood vessel type and location. Arteriosclerosis 1987; 07: 287-291.
  • 65 Nightingale T, Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost 2013; 11 (Suppl. 01) 192-201.
  • 66 Van Mourik JA, Romani Tde Wit, Voorberg J. Biogenesis and exocytosis of Weibel-Palade bodies. Histochem Cell Biol 2002; 117: 113-1222.
  • 67 Gebrane-Younes J, Drouet L, Caen JP, Orcel L. Heterogeneous distribution of Weibel-Palade bodies and von Willebrand factor along with porcine vascular tree. Am J Pathol 1991; 139: 1471-1484.
  • 68 Bowie EJ, Solberg Jr LA, Fass DN. et al. Transplantation of normal bone marrow into a pig with severe von Willebrand’s disease. J Clin Invest 1986; 78: 26-30.
  • 69 Pareti FI, Fujimura Y, Dent JA. et al. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J Biol Chem 1986; 261: 15310-15315.
  • 70 Pareti FI, Niiya K, McPherson JM, Ruggeri ZM. Isolation and characterization of two domains of human von Willebrand factor that interact with fibrillar collagen types I and III. J Biol Chem 1987; 262: 13835-13841.
  • 71 Mohri H, Yoshioka A, Zimmerman TS, Ruggeri ZM. Isolation of the von Willebrand factor domain interacting with platelet glycoprotein Ib, heparin, and collagen and characterization of its three distinct functional sites. J Biol Chem 1989; 264: 17361-17367.
  • 72 Sing CE, Selvidge JG, Alexander-Katz A. Von Willlebrand adhesion to surfaces at high shear rates is controlled by long-lived bonds. Biophys J 2013; 105: 1475-1481.
  • 73 Hoylaerts MF, Yamamoto H, Nuyts K. et al. Von Willebrand factor binds to native collagen VI primarily via its A1 domain. Biochem J 1997; 324: 185-191.
  • 74 Cruz MA, Yuan H, Lee JR. et al. Interaction of the von Willebrand factor with collagen. J Biol Chem 1995; 270: 10822–10827. Erratum in: J Biol Chem 1995; 270: 19668.
  • 75 Lankhof H, van Hoeij M, Schiphorst ME. et al. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb Haemost 1996; 75: 950-958.
  • 76 Lisman T, Raynal N, Groeneveld D. et al. A single high-affinity binding site for von Willebrand factor in collagen III, identified using synthetic triplehelical peptides. Blood 2006; 108: 3753-3756.
  • 77 Mazzucato M, Spessotto P, Masotti A. et al. Identification of domains responsible for von Willebrand factor type VI collagen inter-action mediating platelet adhesion under high flow. J Biol Chem 1999; 274: 3033-3041.
  • 78 Huizinga EG, van der Plas RM, Kroon J. et al. Crystal structure of the A3 domain of human von Willebrand factor. Structure 1997; 05: 1147-1156.
  • 79 Romijn RAP, Bouma B, Wuyster W. et al. Identification of the collagen-binding site of the von Willebrand factor A3-domain. J Biol Chem 2001; 276: 9985-9991.
  • 80 Romijn RA, Westein E, Bouma B. et al. Mapping the collagen-binding site in the von Willebrand factor-A3 domain. J Biol Chem 2003; 278: 15035-15039.
  • 81 Brondijk TH, Bihan D, Farndale RW, Huizinga EG. Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proc Natl Acad Sci USA 2012; 109: 5253-5258.
  • 82 Bienkowska J, Cruz MA, Handin RI, Liddington RC. The von Willebrand factor A3 domain does not contain a metal Ion-dependent adhesion site motif. J Biol Chem 1997; 272: 25162-25167.
  • 83 Flood VH, Gill JC, Christopherson PA. et al. Critical von Willebrand factor A1 domain residues influence type VI collagen binding. J Thromb Haemost 2012; 10: 1417-1424.
  • 84 Titani K, Kumar S, Takio K. et al. Amino acid sequence of human von Willebrand factor. Biochemistry 1986; 25: 3171-3184.
  • 85 Riddell AF, Gomez K, Millar CM. et al. Characterization of W1745C and S1783A. Blood 2009; 114: 3489-3496.
  • 86 Ribba AS, Loisel I, Lavergne JM. et al. Ser968Thr mutation within the A3 domain of von Willebrand factor in two related patients leads to a defective binding of VWF to collagen. Thromb Haemost 2001; 86: 848-854.
  • 87 Bonnefoy A, Romijn RA, Vandervoort PA. et al. Von Willebrand factor A1 domain can adequately substitute for A3 domain in recruitment of flowing platelets to colla-gen. J Thromb Haemost 2006; 04: 2151-2161.
  • 88 Santoro SA. Preferential binding of high molecular weight forms of von Willebrand factor to fibrillar collagen. Biochim Biophys Acta 1983; 756: 123-126.
  • 89 Santoro SA. Adsorption of von Willebrand factor/ factor VIII by the genetically distinct interstitial collagens. Thromb Res 1981; 21: 689-693.
  • 90 Scott DM, Griffin B, Pepper DS, Barnes MJ. The binding of purified factor VIII/von Willebrand factor to collagens of differing type and form. Thromb Res 1981; 24: 467-472.
  • 91 Kessler CM, Floyd CM, Rick ME. et al. Collagenfactor VIII/von Willebrand factor protein interaction. Blood 1984; 63: 1291-1298.
  • 92 Hormia M, Lehto VP, Virtanen I. Factor VIII-related antigen. Exp Cell Res 1983; 149: 483-497.
  • 93 De Groot PG, Ottenhof-Rovers M, van Mourik JA, Sixma JJ. Evidence that the primary binding site of von Willebrand factor that mediates platelet adhesion on subendothelium is not collagen. J Clin Invest 1988; 82: 65-73.
  • 94 Wagner DD, Urban-Pickering M, Marder VJ. Von Willebrand protein binds to extracellular matrices independently of collagen. Proc Natl Acad Sci USA 1984; 81: 471-475.
  • 95 Fujimura Y, Titani K, Holland LZ. et al. A heparinbinding domain of human von Willebrand factor. J Biol Chem 1987; 262: 1734-1739.
  • 96 Mohri H, Yoshioka A, Zimmerman TS, Ruggeri ZM. Isolation of the von Willebrand factor domain interacting with platelet glycoprotein Ib, heparin, and collagen, and characterization of its three distinct functional sites. J Biol Chem 1989; 264: 17361-17367.
  • 97 Fretto LJ, Fowler WE, McCaslin DR. et al. Substructure of human von Willebrand factor. J Biol Chem 1986; 261: 15679-15689.
  • 98 Guidetti GF, Bartolini B, Bernardi B. et al. Binding of von Willebrand factor to the small proteoglycan decorin. FEBS Lett 2004; 574: 95-100.
  • 99 Roberts DD, Williams SB, Gralnick HR, Ginsburg V. Von Willebrand factor binds specifically to sulfated glycolipids. J Biol Chem 1986; 261: 3306-3309.
  • 100 Borthakur G, Cruz MA, Dong JF. et al. Sulfatides inhibit platelet adhesion to von Willebrand factor in flowing blood. J Thromb Haemost 2003; 01: 1288-1295.
  • 101 Sobel M, McNeill PM, Carlson PL. et al. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo. J Clin Invest 1991; 87: 1787-1793.
  • 102 Savage B, Sixma JJ, Ruggeri ZM. Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc Natl Acad Sci USA 2002; 99: 425-430.
  • 103 Yuan H, Deng N, Zhang S. et al. The unfolded von Willebrand factor response in bloodstream. J Hematol Oncol 2012; 05: 65.
  • 104 Ulrichts H, Vanhoorelbeke K, Girma JP. et al. The von Willebrand factor self-association is modulated by a multiple domain interaction. J Thromb Haemost 2005; 03: 552-561.
  • 105 De Ceunynck K, De Meyer SF, Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood 2013; 121: 270-277.
  • 106 Shankaran H, Alexandridis P, Neelamegham S. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 2003; 101: 2637-2645.
  • 107 Goto S, Salomon DR, Ikeda Y, Ruggeri ZM. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets. J Biol Chem 1995; 270: 23352-23361.
  • 108 Choi H, Aboulfatova K, Pownall HJ. et al. Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand factor. J Biol Chem 2007; 282: 35604-35611.
  • 109 Li Y, Choi H, Zhou Z. et al. Covalent regulation of ULVWF string formation and elongation on endothelial cells under flow conditions. J Thromb Haemost 2008; 06: 1135-1143.
  • 110 Siediecki CA, Lestini BJ, Kottke-Marchant K. et al. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 1996; 88: 2939-2950.
  • 111 Celikel R, Ruggeri ZM, Varughese KI. Von Willebrand factor conformation and adhesive function is modulated by an internalized water molecule. Nat Struct Biol 2000; 07: 881-884.
  • 112 Dumas JJ, Kumar R, McDonagh T. et al. Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Ibα complex reveals conformation differences with a complex bearing von Willebrand disease mutations. J Biol Chem 2004; 279: 23327-23334.
  • 113 Ruggeri ZM, Pareti FI, Mannucci PM. et al. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand’s disease. N Engl J Med 1980; 302: 1047-1051.
  • 114 Ruggeri ZM, Zimmerman TS. Variant von Willebrand’s disease. J Clin Invest 1980; 65: 1318-1325.
  • 115 Cooney KA, Ginsburg D. Comparative analysis of Type 2b von Willebrand disease mutations. Blood 1996; 87: 2322-2328.
  • 116 Holmberg L, Nilsson IM, Borge L. et al. Platelet aggregation induced by 1-desamino-8-D-arginine vasopressin in Type IIB von Willebrand’s disease. N Engl J Med 1983; 309: 816-821.
  • 117 Hulstein JJ, de Groot PG, Silence K. et al. A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B. Blood 2005; 106: 3035-3042.
  • 118 Lopez-Fernandez MF, Ginsberg MH, Ruggeri ZM. et al. Multimeric structure of platelet factor VIII/ von Willebrand factor. The presence of larger multimers and their reassociation with thrombinstimulated platelets. Blood 1982; 60: 1132-1138.
  • 119 Ruggeri ZM. Type IIB von Willebrand disease. J Thromb Haemost 2004; 02: 2-6.
  • 120 Doggett TA, Girdhar G, Lawshe A. et al. Selectinlike kinetics and biomechanics promote rapid platelet adhesion in flow. Biophys J 2002; 83: 194-205.
  • 121 Marshall BT, Long M, Piper JW. et al. Direct observation of catch bonds involv-ing cell-adhesion molecules. Nature 2003; 423: 190-193.
  • 122 Yago T, Lou J, Wu T. et al. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J Clin Invest 2008; 118: 3195-3207.
  • 123 Lou J, Zhu C. Flow induces loop-to-β-hairpin transition on the β-witch of platelet glycoprotein Ibα. Proc Natl Acad Sci USA 2008; 105: 13847-13852.
  • 124 Kim J, Zhang CZ, Zhang X, Springer TA. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 2010; 466: 992-995.
  • 125 Blenner MA, Dong X, Springer TA. Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib. J Biol Chem 2014; 289: 5565-5579.
  • 126 Mody NA, King MR. Platelet adhesive dynamics. Biophys J 2008; 95: 2539-2555.
  • 127 Mody NA, King MR. Platelet adhesive dynamics. Biophys J 2008; 95: 2556-2574.
  • 128 Marguerie GA, Plow EF, Edgington TS. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 1979; 254: 5357-5363.
  • 129 Bennett JS, Vilaire G, Cines DB. Identification of the fibrinogen receptor on human platelets by photoaffinity labeling. J Biol Chem 1982; 257: 8049-8064.
  • 130 Ruggeri ZM, Bader R, de Marco L. Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1982; 79: 6038-6041.
  • 131 Ruggeri ZM, De Marco L, Gatti L. et al. Platelets have more than one binding site for von Willebrand factor. J Clin Invest 1983; 72: 1-12.
  • 132 Plow EF, Ginsberg MH. Specific and saturable binding of plasma fibronectin to thrombinstimulated human platelets. J Biol Chem 1981; 256: 9477-9482.
  • 133 Ni H, Yuen PS, Papalia JM. et al. Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 2003; 100: 2415-2419.
  • 134 Chauhan AK, Kisucka J, Cozzi MR. et al. Prothrombotic effects of fibronectin isoforms containing the EDA domain. Arterioscler Thromb Vasc Biol 2008; 28: 296-301.
  • 135 Andre P, Prasad KS, Denis CV. et al. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nat Med 2002; 08: 247-252.
  • 136 De Marco L, Girolami A, Zimmerman TS, Ruggeri ZM. Von Willebrand factor interaction with the glycoprotein IIb/IIa complex. J Clin Invest 1986; 77: 1272-1277.
  • 137 Pietu G, Cherel G, Marguerie G, Meyer D. Inhibition of von Willebrand factor-platelet interaction by fibrinogen. Nature 1984; 308: 648-649.
  • 138 Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101: 479-486.
  • 139 Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984; 309: 30-33.
  • 140 Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion. Science 1987; 238: 491-497.
  • 141 Hynes RO. Integrins. Cell 1992; 69: 11-25.
  • 142 Berliner SA, Roberts JR, Thorn ML, Ruggeri ZM. Generation and characterization of specific antibodies directed to the binding domain of adhesive molecules. Pept Res 1988; 01: 60-64.
  • 143 Berliner S, Niiya K, Roberts JR. et al. Generation and characterization of pep-tide-specific antibodies that inhibit von Willebrand factor binding to glycoprotein IIb-IIIa without interacting with other adhesive molecules. J Biol Chem 1988; 263: 7500-7505.
  • 144 Dejana E, Lampugnani MG, Giorgi M. et al. Von Willebrand factor promotes endothelial cell adhesion via an Arg-Gly-Asp-dependent mechanism. J Cell Biol 1989; 109: 367-375.
  • 145 Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 1987; 84: 6471-6475.
  • 146 Denis C, Williams JA, Lu X. et al. Solid-phase von Willebrand factor contains a conformationally active RGD motif that mediates endothelial cell adhesion through the alpha v beta 3 receptor. Blood 1993; 82: 3622-3630.
  • 147 Starke RD, Ferraro F, Paschalaki KE. et al. Endothelial von Willebrand factor regulates angiogenesis. Blood 2011; 117: 1071-1080.
  • 148 Andre P, Denis CV, Ware J. et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 2000; 96: 3322-3328.
  • 149 Huang J, Roth R, Heuser JE, Sadler JE. Integrin alpha(v)beta(3) on human endothelial cells binds von Willebrand factor strings under fluid shear stress. Blood 2009; 113: 1589-1597.
  • 150 Tangelder GJ, Slaaf DW, Arts T, Reneman RS. Wall shear rate in arterioles in vivo. Am J Physiol 1988; 254: H1059-H1064.
  • 151 Zhang W, Deng W, Zhou L. et al. Identification of a juxtamembrane mechano-sensitive domain in the platelet mechanosensor glycoprotein Ib-IX complex. Blood. 2014 DOI: 10.1182/blood-2014–07–589507.
  • 152 Kasirer-Friede A, Ware J, Leng L. et al. Lateral clustering of platelet GP Ib-IX complexes leads to up-regulation of the adhesive function of integrin αIIbβ3. J Biol Chem 2002; 277: 11949-11956.
  • 153 Falati S, Edmead CE, Poole AW. Glycoprotein IbV-IX, a receptor for von Willebrand factor, couples physically and functionally to the Fc receptor γ-chain, Fyn, and Lyn to activate human platelets. Blood 1999; 94: 1648-1656.
  • 154 Wu Y, Suzuki-Inoue K, Satoh K. et al. Role of Fc receptor γ-chain in platelet glycoprotein Ib-mediated signaling. Blood 2001; 97: 3836-3845.
  • 155 Torti M, Bertoni A, Canobbio I. et al. Rap 1B and Rap2B translocation to the cytoskeleton by von Willebrand factor involves FcgammaII receptormediated protein tyrosine physphorylation. J Biol Chem 1999; 274: 13690-13697.
  • 156 Watson SP, Asazuma N, Atkinson B. et al. The role of ITAMand ITIM-coupled receptors in platelet activation by collagen. Thromb Haemost 2001; 86: 276-288.
  • 157 Sullam PM, Hyun WC, Szollosi J. et al. Physical proximity and functional interplay of the glycoprotein Ib-IX-V complex and the Fc receptor FcγRIIA on the platelet plasma membrane. J Biol Chem 1998; 273: 5331-5336.
  • 158 Kasirer-Friede A, Cozzi MR, Mazzucato M. et al. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 2004; 103: 3403-3411.
  • 159 Cunningham JG, Meyer SC, Fox JEB. The cytoplasmic domain of the α-subunit of glycoprotein Ib mediates attachment of the entire GP Ib-IX complex to the cytoskeleton and regulates von Willebrand factor-induced changes in cell morphology. J Biol Chem 1996; 271: 11581-11587.
  • 160 Andrews RK, Fox JEB. Identification of a region in the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX complex that binds to purified actin-binding protein. J Biol Chem 1992; 267: 18605-18611.
  • 161 Du X, Harris SJ, Tetaz TJ. et al. Association of a phospholipase A 2 with the platelet glycoprotein IbIX complex. J Biol Chem 1994; 269: 18287-18290.
  • 162 Feng S, Christodoulides N, Resendiz JC. et al. Cytoplasmic domains of GpIbα and GpIbβ regulate 14–3–3δ binding to GpIb/IX/V. Blood 2000; 95: 551-557.
  • 163 Andrews RK, Shen Y, Gardiner EE. et al. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost 1999; 82: 357-364.
  • 164 Gardiner EE. A GPIb-IX-V complex signaling environment. J Thromb Haemost 2010; 08: 1075-1076.
  • 165 Munday AD, Berndt MC, Mitchell CA. Phospho-inositide 3-kinase forms a complex with platelet membrane glycoprotein Ib-IX-V complex and 14–3–3δ. Blood 2000; 96: 577-584.
  • 166 Mazzucato M, Pradella P, Cozzi MR. et al. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 2002; 100: 2793-2800.
  • 167 Nesbitt WS, Kulkarni S, Giuliano S. et al. Distinct glycoprotein Ib/V/IX and integrin αIIbβ3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 2002; 277: 2965-2972.
  • 168 Mazzucato M, Cozzi MR, Pradella P. et al. Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under high flow. Blood 2004; 104: 3221-3227.
  • 169 Yap CL, Anderson KE, Hughan SC. et al. Essential role for phospho-inositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin αIIbβ3. Blood 2002; 99: 151-158.
  • 170 Goto S, Tamura N, Eto K. et al. Functional significance of adenosine 5’-diphosphate receptor in platelet activation inititated by binding of von Willebrand factor to platelet Gp Ib‡ induced by conditions of high shear rate. Circulation 2002; 105: 2531-2536.
  • 171 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-666.
  • 172 Ruggeri ZM, Dent JA, Saldivar E. Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood 1999; 94: 172-178.
  • 173 Moake JL, Turner NA, Stathopoulos NA. et al. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 1988; 71: 1366-1374.
  • 174 Peterson DM, Stathopoulos NA, Giorgio TD. et al. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa. Blood 1987; 69: 625-628.
  • 175 Dayananda KM, Singh I, Mondal N, Neelamegham S. Von Willebrand factor self-association on platelet GpIbα under hydrodynamic shear. Blood 2010; 116: 3990-3998.
  • 176 Oney S, Nimjee SM, Layzer J. et al. Antidote-controlled platelet inhibition targeting von Willebrand factor with aptamers. Oligonucleotides 2007; 17: 265-274.
  • 177 Lenting PJ, Denis CV, Wohner N. Von Willebrand factor and thrombosis: risk factor, actor and pharmacological target. Curr Vasc Pharmacol 2013; 11: 448-456.
  • 178 Bartunek J, Barbato E, Heyndrickx G. et al. Novel antiplatelet agents: ALX-0081, a Nanobody directed towards von Willebrand factor. J Cardiovasc Transl Res 2013; 06: 355-363.
  • 179 Crawley JT, Lane DA, Woodward M. et al. Evidence that high von Willebrand factor and low ADAMTS-13 levels independently increase the risk of a non-fatal heart attack. J Thromb Haemost 2008; 06: 583-588.