Hamostaseologie 2016; 36(02): 77-88
DOI: 10.5482/HAMO-14-11-0076
Review
Schattauer GmbH

Oxidative stress, NADPH oxidases, and arteries

Oxidativer Stress, NADPH-Oxidasen und Arterien
Qi-An Sun
1   McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
,
Marschall S. Runge
1   McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
,
Nageswara R. Madamanchi
1   McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
› Author Affiliations
Further Information

Publication History

received: 26 November 2014

accepted in revised form: 21 January 2015

Publication Date:
20 December 2017 (online)

Zusammenfassung

Die Atherosklerose und ihre wichtigsten Komplikationen – Myokardinfarkt und Schlaganfall – sind die Hauptursachen für Tod und Behinderung in den USA und weltweit. Eine dramatische Zunahme bei Adipositas und Diabetes mellitus wird wahrscheinlich auch in Zukunft zu einer hohen Prävalenz kardiovaskulärer Erkrankungen (CVD) und deren Auswirkungen auf das Gesundheitswesen führen. Große Fortschritte gibt es bei der Entwicklung neuer Therapien zur Senkung der Inzidenz von Atherosklerose und CVD, besonders bei der Behandlung der Hypercholesterinämie und Hypertonie. Der gemeinsame mechanistische Nenner bei vielen Risikofaktoren für CVD ist oxidativer Stress. Erst seit kurzem verfügen wir über Methoden, um die Schnittstelle zwischen oxidativem Stress und CVD im Tiermodell zu untersuchen. Die wichtigste Quelle für reaktive Sauerstoffspezies (und damit für oxidativen Stress) in vaskulären Zellen sind die Formen der Nicotin - amidadenindinukleotidphosphat-Oxidase (NADPH-Oxidase). Die jüngsten Studien belegen eindeutig, dass 1. NADPH-Oxidasen im Tiermodell von grundlegender Bedeutung für Atherosklerose und Hypertonie sind und 2. der vaskuläre oxidative Stress, angesichts der gewebespezifischen Expression wichtiger Bestandteile der NADPH-Oxidase, ein Ziel bei der Prävention der CVD sein könnte.

Summary

Atherosclerosis and its major complications – myocardial infarction and stroke – remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD.

 
  • References

  • 1 Go AS, Mozaffarian D, Roger VL. et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee.. Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 2014; 129: 399-410.
  • 2 Reiner Ž. Statins in the primary prevention of cardiovascular disease.. Nat Rev Cardiol 2013; 10: 453-464.
  • 3 Scandinavian Simvastatin Survival Study (4S) Group.. Randomized trial of cholesterol lowering in 4,444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study.. Lancet 1994; 344: 1383-1389.
  • 4 Bu DX, Griffin G, Lichtman AH. Mechanisms for the anti-inflammatory effects of statins.. Curr Opin Lipidol 2011; 22: 165-170.
  • 5 Rader DJ, Cohen J, Hobbs HH. Monogenic hyper-cholesterolemia: new insights in pathogenesis and treatment.. J Clin Invest 2003; 111: 1795-803.
  • 6 Kashani A, Phillips CO, Foody JM. et al. Risks associated with statin therapy: a systematic overview of randomized clinical trials.. Circulation 2006; 114: 2788-2797.
  • 7 Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease.. Free Radic Biol Med 2013; 61C: 473-501.
  • 8 Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research.. Antioxid Redox Signal 2014; 20: 164-182.
  • 9 Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis.. J Cell Mol Med 2010; 14: 70-78.
  • 10 Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease.. Antioxid Redox Signal 2006; 8: 691-728.
  • 11 Aviram M, Fuhrman B. LDL oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: role of prooxidants vs.. antioxidants. Mol Cell Biochem 1998; 188: 149-159.
  • 12 Hakala JK, Oörni K, Pentikäinen MO. et al. Lipolysis of LDL by human secretory phospholipase A(2) induces particle fusion and enhances the retention of LDL to human aortic proteoglycans.. Arterioscler Thromb Vasc Biol 2001; 21: 1053-1058.
  • 13 Guyton JR. Phospholipid hydrolytic enzymes in a ’cesspool’ of arterial intimal lipoproteins: a mechanism for atherogenic lipid accumulation.. Arterioscler Thromb Vasc Biol 2001; 21: 884-886.
  • 14 Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics.. Nat Rev Drug Discov 2007; 6: 662-680.
  • 15 Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets.. Nat Rev Drug Discov 2011; 10: 453-471.
  • 16 Higashi Y, Sasaki S, Nakagawa K. et al. Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals.. Am J Hypertens 2002; 15: 326-332.
  • 17 Landmesser U, Dikalov S, Price SR. et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.. J Clin Invest 2003; 111: 1201-1209.
  • 18 Wadham C, Mangoni AA. Dimethylarginine dimethylaminohydrolase regulation: a novel therapeutic target in cardiovascular disease.. Expert Opin Drug Metab Toxicol 2009; 5: 303-319.
  • 19 Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease.. Physiol Rev 2004; 84: 767-801.
  • 20 Lee MY, Griendling KK. Redox signaling, vascular function, and hypertension.. Antioxid Redox Signal 2008; 10: 1045-1059.
  • 21 Shah SV, Baricos WH, Basci A. Degradation of human glomerular basement membrane by stimulated neutrophils.. Activation of a metalloproteinase(s) by reactive oxygen metabolites. J Clin Invest 1987; 79: 25-31.
  • 22 Chung AW, Yang HH, Kim JM. et al. Upregulation of matrix metalloproteinase-2 in the arterial vasculature contributes to stiffening and vasomotor dysfunction in patients with chronic kidney disease.. Circulation 2009; 120: 792-801.
  • 23 Zhou RH, Vendrov AE, Tchivilev I. et al. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.. Arterioscler Thromb Vasc Biol 2012; 32: 745-755.
  • 24 Clarke MC, Figg N, Maguire JJ. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis.. Nat Med 2006; 12: 1075-1080.
  • 25 Nisimoto Y, Diebold BA, Constentino-Gomes D, Lambeth JD. Nox4: a hydrogen peroxide-generating oxygen sensor.. Biochemistry 2014; 53: 5111-5120.
  • 26 Lambeth JD. NOX enzymes and the biology of reactive oxygen.. Nat Rev Immunol 2004; 4: 181-189.
  • 27 Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.. Physiol Rev 2007; 87: 245-313.
  • 28 Niu XL, Madamanchi NR, Vendrov AE. et al. Nox activator 1: a potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries.. Circulation 2010; 121: 549-559.
  • 29 Ambasta RK, Schreiber JG, Janiszewski M. et al. Noxa1 is a central component of the smooth muscle NADPH oxidase in mice.. Free Radic Biol Med. 2006; 41: 193-201.
  • 30 Nauseef WM. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases.. Biochim Biophys Acta 2014; 1840: 757-767.
  • 31 Touyz RM, Chen X, Tabet F. et al. Expression of a functionally active gp91phox-containing neutro-phil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.. Circ Res 2002; 90: 1205-1213.
  • 32 Colston JT, de la Rosa SD, Strader JR. et al. H2O2activates Nox4 through PLA2-dependent arachidonic acid production in adult cardiac broblasts.. FEBS Lett 2005; 579: 2533-2540.
  • 33 Bedard K, Jaquet V, Krause KH. NOX5: from basic biology to signaling and disease.. Free Radic Biol Med 2012; 52: 725-734.
  • 34 Modlinger P, Chabrashvili T, Gill PS. et al. RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response.. Hypertension 2006; 47: 238-244.
  • 35 Plesková M, Beck KF, Behrens MH. et al. Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit Nox1 in rat renal mesangial cells.. FASEB J 2006; 20: 139-141.
  • 36 Chabrashvili T, Tojo A, Onozato ML. et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney.. Hypertension 2002; 39: 269-274.
  • 37 Schlüter T, Zimmermann U, Protzel C. et al. Intrarenal artery superoxide is mainly NADPH oxidase-derived and modulates endothelium-dependent dilation in elderly patients.. Cardiovasc Res 2010; 85: 814-824.
  • 38 Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system.. Circ Res 2012; 110: 1364-1390.
  • 39 Lee MY, SanMartinv A, Mehta PK. et al. Mechanisms of vascular smooth muscle NADPH oxidase1 (Nox1) contribution to injury-induced neointimal formation.. Arterioscler Thromb Vasc Biol 2009; 29: 480-487.
  • 40 Schröder K, Helmcke I, Palfi K. et al. Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells.. Arterioscler Thromb Vasc Biol 2007; 27: 1736-1743.
  • 41 Szöcs K, Lassègue B, Sorescu D. et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury.. Arterioscler Thromb Vasc Biol 2002; 22: 21-27.
  • 42 Sheehan AL, Carrell S, Johnson B. et al. Role for nox1 NADPH oxidase in atherosclerosis.. Atherosclerosis 2011; 216: 321-326.
  • 43 Vendrov AE, Madamanchi NR, Niu XL. et al. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis.. J Biol Chem 2010; 285: 26545-26557.
  • 44 Di Marco E, Gray SP, Chew P. et al. Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe(-/-) mice.. Diabetologia 2014; 57: 633-642.
  • 45 Gray SP, Di Marco E, Okabe J. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis.. Circulation 2013; 127: 1888-1902.
  • 46 Gavazzi G, Banfi B, Deffert C. et al. Decreased blood pressure in NOX1-deficient mice.. FEBS Lett 2006; 580: 497-504.
  • 47 Matsuno K, Yamada H, Iwata K. et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice.. Circulation 2005; 112: 2677-2685.
  • 48 Dikalova AE, Góngora MC, Harrison DG. et al. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling.. Am J Physiol Heart Circ Physiol 2010; 299: H673-H679.
  • 49 Judkins CP, Diep H, Broughton BR. et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE/− mice.. Am J Physiol Heart Circ Physiol 2010; 298: H24-H32.
  • 50 Chen Z, Keaney Jr JF, Schulz E. et al. Decreased neointimal formationin Nox2– deficient mice reveals a direct role for NADPH oxidase in the response to arterial injury.. Proc Natl Acad Sci USA 2004; 101: 13014-13019.
  • 51 Jung O, Schreiber JG, Geiger H. et al. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension.. Circulation 2004; 109: 1795-1801.
  • 52 Carlström M, Lai EY, Ma Z. et al. Role of NOX2 in the regulation of afferent arteriole responsiveness.. Am J Physiol Regul Integr Comp Physiol 2009; 296: R72-R79.
  • 53 Morawietz H, Weber M, Rueckschloss U. et al. Up-regulation of vascular NAD(P)H oxidase subunit gp91phox and impairment of the nitric oxide signal transduction pathway in hypertension.. Biochem Biophys Res Commun 2001; 85: 1130-1135.
  • 54 Fukui T, Ishizaka N, Rajagopalan S. et al. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats.. Circ Res 1997; 80: 45-51.
  • 55 Chabrashvili T, Kitiyakara C, Blau J. et al. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression.. Am J Physiol Regul Integr Comp Physiol 2003; 285: R117-R124.
  • 56 Barry-Lane PA, Patterson C, vanderMerwe M. et al. p47phox is required for atherosclerotic lesion progression in ApoE(−/−) mice.. J Clin Invest 2001; 108: 1513-1522.
  • 57 Vendrov AE, Madamanchi NR, Hakim ZS. et al. Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis.. Circ Res 2006; 98: 1254-1263.
  • 58 Vendrov AE, Hakim ZS, Madamanchi NR. et al. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells.. Arterioscler Thromb Vasc Biol 2007; 27: 2714-2721.
  • 59 Landmesser U, Cai H, Dikalov S. et al. Role of p47(phox) in vascular oxidative stress and hyper-tension caused by angiotensin II.. Hypertension 2002; 40: 511-515.
  • 60 Lai EY, Solis G, Luo Z. et al. p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice.. Hypertension 2012; 59: 415-420.
  • 61 Sorescu D, Weiss D, Lassègue B. et al. Superoxide production and expression of nox family proteins in human atherosclerosis.. Circulation 2002; 105: 1429-1435.
  • 62 Azumi H, Inoue N, Takeshita S. et al. Expression of NADH/NADPH oxidase p22phox in human coronary arteries.. Circulation 1999; 100: 1494-1498.
  • 63 Azumi H, Inoue N, Ohashi Y. et al. Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NAD(P)H oxidase.. Arterioscler Thromb Vasc Biol 2002; 22: 1838-1844.
  • 64 Terashima M, Ohashi Y, Azum H. et al. Impact of NAD(P)H oxidase-derived reactive oxygen species on coronary arterial remodeling: a comparative intravascular ultrasound and histochemical analysis of atherosclerotic lesions.. Circ Cardiovasc Interv 2009; 2: 196-204.
  • 65 Xu S, Chamseddine AH, Carrell S, Miller Jr. FJ. Nox4 NADPH oxidase contributes to smooth muscle cell phenotypes associated with unstable atherosclerotic plaques.. Redox Biol 2014; 2: 642-650.
  • 66 Ray R, Murdoch CE, Wang M. et al. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo.. Arterioscler Thromb Vasc Biol 2011; 31: 1368-1376.
  • 67 BelAiba RS, Djordjevic T, Petry A. et al. NOX5 variants are functionally active in endothelial cells.. Free Radic Biol Med 2007; 42: 446-459.
  • 68 Jay DB, Papaharalambus CA, Seidel-Rogol B. et al. Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells.. Free Radic Biol Med 2008; 45: 329-335.
  • 69 Montezano AC, Burger D, Paravicini TM. et al. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells.. Circ Res 2010; 106: 1363-373.
  • 70 Guzik TJ, Chen W, Gongora MC. et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease.. J Am Coll Cardiol 2008; 52: 1803-1809.