Vet Comp Orthop Traumatol 2008; 21(02): 140-146
DOI: 10.3415/VCOT-07-03-0026
Original Research
Schattauer GmbH

Biomechanical characteristics of allogeneic cortical bone pins designed for fracture fixation

J. M. Liptak
1   Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
,
M. R. Edwards
1   Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
,
S. P. James
2   Department of Mechanical Engineering, College of Engineering, Colorado State University, Fort Collins, Colorado, USA
,
W. S. Dernell
1   Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
,
R. J. Scott
1   Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
,
A. M. Bachand
3   Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
,
S. J. Withrow
1   Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 19. März 2007

Accepted 03. Mai 2007

Publikationsdatum:
17. Dezember 2017 (online)

Summary

The biomechanical characteristics of 1.2 mm diameter allogeneic cortical bone pins harvested from the canine tibia were evaluated and compared to 1.1 mm diameter stainless steel pins and 1.3 mm diameter polydioxanone (PDS) pins using impact testing and four-point bending. The biomechanical performance of allogeneic cortical bone pins using impact testing was uniform with no significant differences between sites, side, and gender. In four-point bending, cortical bone pins harvested from the left tibia (204.8 ± 77.4 N/mm) were significantly stiffer than the right tibia (123.7 ± 54.4 N/mm, P=0.0001). The site of bone pin harvest also had a significant effect on stiffness, but this was dependent on interactions with gender and side. Site C in male dogs had the highest mean stiffness in the left tibia (224.4 ± 40.4 N/mm), but lowest stiffness in the right tibia (84.9 ± 24.2 N/mm). Site A in female dogs had the highest mean stiffness in the left tibia (344.9 ± 117.4 N/mm), but lowest stiffness in the right tibia (60.8 ± 3.7 N/mm). The raw and adjusted bending properties of 1.2 mm cortical bone pins were significantly better than 1.3 mm PDS pins, but significantly worse than 1.1 mm stainless steel pins (P<0.0001). In conclusion, cortical bone pins may be suitable as an implant for fracture fixation based on initial biomechanical comparison to stainless steel and PDS pins used in clinical practice.

 
  • References

  • 1 Botsman Botsman, Pihlajamaki HK. Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop Relat Res 2000; 371: 216-227.
  • 2 Ciccone WJ, Motz C, Bentley C. et al. Bioabsorb- able implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg 2001; 9: 280-288.
  • 3 Roman Roman, Garcia PG. Partially biodegradable polyacrylic-polyester composites for internal bone fracture fixation. Biomaterials 1991; 12: 236-241.
  • 4 Bhatia S, Shalaby SW, Powers DL. et al. The effect of site of implantation and animal age on properties of polydioxanone pins. J Biomater Sci 1994; 6: 435-466.
  • 5 Daniels AU, Chang MKO, Andriano KP. Mechanical properties of biodegradable polymers and composites proposed for internal fixation ofbone. J Appl Biomater 1990; 1: 57-78.
  • 6 Simon JA, Ricci JL, Di Cesare PE. Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part II. Clinical studies. Am J Orthop 1997; 26: 754-762.
  • 7 An YH, Friedman RJ, Powers DL. et al. Fixation of osteotomies using bioabsorbable screws in the canine femur. Clin Orthop Relat Res 1998; 355: 300-311.
  • 8 Athanasiou KA, Agrawal CM, Barber FA. et al. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 1998; 14: 726-737.
  • 9 Donigian AM, Plaga BR, Caskey PM. Biodegradable fixation of physeal fractures in goat distal femur. J Pediatr Orthop 1993; 13: 349-354.
  • 10 Eppley BL. Zygomaticomaxillary fracture repair with resorbable plates and screws. J Craniofacial Surg 2000; 11: 377-385.
  • 11 Kankare J. Operative treatment of displaced intraarticular fractures of the calcaneus using absorbable internal fixation: a prospective study of twenty-five fractures. J Orthop Trauma 1998; 12: 413-419.
  • 12 Maruyama T, Saha S, Mongiano DO. et al. Meta- carpal fracture fixation with absorbable polygly- colide rods and stainless steel K-wires: a bio- mechanical comparison. J Biomed Mat Res 1996; 33: 9-12.
  • 13 Pihlajamaki H, Bostman O, Hirvensalo E. et al. Absorbable pin of self-reinforced poly-L-lactic acid for fixation for fractures and osteotomies. J Bone Joint Surg 1992; 74B: 853-857.
  • 14 Raiha JE, Parchman M, Krook L. et al. Fixation of trochanteric osteotomies in laboratory beagles with absorbable screws of polylactic acid. Vet Comp Orthop Traumatol 1990; 3: 123-129.
  • 15 Raiha JE, Mero M, Morelius M. et al. Intramedul- lary nailing of experimental femoral midshaft osteotomies in cats with biodegradable rods of poly- lactic acid. Vet Comp Orthop Traumatol 1992; 5: 71-75.
  • 16 Raiha JE, Axelson P, Skutnabb K. et al. Fixation of cancellous bone and physeal fractures with biodegradable rods of self-enforced polylactic acid. J Small Anim Pract 1993; 34: 131-138.
  • 17 Lavery LA, Peterson JD, Pollack R. et al. Risk of complications of first metatarsal head osteotomies with biodegradable pin fixation: Biofix versus Orthosorb. J Foot Ankle Surg 1994; 33: 334-340.
  • 18 Lindholm TS, Pylkkanen P, Osterman K. Fixation of osteochondral fragments in the knee joint. Clin Orthop Relat Res 1977; 126: 256-260.
  • 19 Ford TC, Maurer LM, Myrick KW. Cortical bone pin fixation: a preliminary report on fixation of digital arthrodeses and distal chevron first meta- tarsal osteotomies. J Foot Ankle Surg 2002; 41: 23-29.
  • 20 Goldberg Goldberg, Stevenson S. Natural history of autografts and allografts. Clin Orthop Relat Res 1987; 225: 7-16.
  • 21 Hanson Hanson, Markel MD. Bone and cartilage transplantation. Vet Comp Orthop Traumatol 1992; 5: 163-169.
  • 22 Johnson AL, Eurell JC, Schaeffer DJ. Evaluation of canine cortical bone graft remodeling. Vet Surg 1992; 21: 293-298.
  • 23 Reilly Reilly, Burstein AH. The mechanical properties of cortical bone. J Bone Joint Surg 1974; 56A: 1001-1022.
  • 24 Sinibaldi KR. Evaluation of full cortical allografts in 25 dogs. J Am Vet Med Assoc 1989; 194: 1570-1577.
  • 25 Leung PC. Use of an intramedullary bone peg in digital replantations, revascularization, and toe- transfers. J Hand Surg. 1981 6. 281.
  • 26 Gillespie Gillespie, Day B. Bone peg fixation in the treatment of osteochondritis dissecans of the knee joint. Clin Orthop Relat Res 1979; 143: 125-130.
  • 27 Johnson Johnson, McLeod TL. Osteochondral fragments of the distal end of the femur fixed with bone pegs. J Bone Joint Surg 1977; 59A: 677-679.
  • 28 Lindholm Lindholm, Osterman K. Internal fixation of the fragment of osteochondritis dissecans in the hip using bone transplants. J Bone Joint 1980; 62B: 43-45.
  • 29 van Vechten BJ, Vasseur PB, Rodrigo JJ. et al. A comparison of four different methods of fixation of osteochondral fragments. Vet Comp Orthop Traumatol 1993; 6: 80-84.
  • 30 Donati D, di Liddo M, Zavatta M. et al. Massive bone allograft reconstruction in high-grade os- teosarcoma. Clin Orthop Relat Res 2000; 377: 186-194.
  • 31 Donati D, Giacomini S, Gozzi E. et al. Allograft arthrodesis treatment ofbone tumors: a two-center study. Clin Orthop Relat Res 2002; 400: 217-224.
  • 32 Hornicek FJ, Zych GA, Hutson JJ. et al. Salvage of humeral nonunions with onlay bone plate allo- graft augmentation. Clin Orthop Relat Res 2001; 386: 203-209.
  • 33 Kuokkanen H, Raty S, Korkala O. et al. Osteosynthesis and allogeneic bone grafting in complex osteoporotic fractures. Orthopedics 2001; 24: 249-252.
  • 34 LaRue SM, Withrow SJ, Powers BE. et al. Limb- sparing treatment for osteosarcoma in dogs. J Am Vet Med Assoc 1989; 195: 1734-1744.
  • 35 Rehman S, Damron TA, Geel C. Humeral blade plate fixation of intercalary allografts and seg- mentally comminuted proximal humeral fractures: a preliminary report. Injury 2000; 31: 783-788.
  • 36 Wander KW, Schwarz PD, James SP. et al. Fracture healing after stabilization with intramedullary xe- nograft cortical bone pins: a study in pigeons. Vet Surg 2000; 29: 237-244.
  • 37 Currey J. The Mechanical Properties of Bone. In: The Mechanical Adaptions of Bones. Currey JD (ed). Princeton, NJ: Princeton University Press 1984; 38-85.
  • 38 Markel MD. Bone structure and the response of bone to stress. In: Equine Fracture Repair. Nixon AJ. (ed). Philadelphia: WB. Saunders; 1996: 3-9.
  • 39 Zioupos P, Smith CW, An YH. Factors affecting mechanical properties of bone. In: Mechanical Testing of Bone and the Bone-Implant Interface. An YH, Draughn RA. (eds). Boca Raton: CRC Press,; 2000: 65-85.
  • 40 Arendt Arendt, Bailey SJ. Standard specification and test methods for intramedullary fixation devices. In: ASTM F 1264-03. Arendt SA, Bailey SJ. (eds). West Conshohocken: ASTM International; 2001: 1-18.
  • 41 Lopez Lopez, Markel MD. Bending tests of bone. In: Mechanical Testing of Bone and the Bone-Implant Interface. An YH, Draughn RA. (eds). Boca Raton: CRC Press; 2000: 207-217.
  • 42 Boemo CM. Injuries of the metacarpus and metatarsus. In: Canine Sports Medicine and Surgery. Bloomberg MS, Dee JF, Taylor RA. (eds). Philadelphia: WB. Saunders; 1998: 150-165.
  • 43 Johnson KA, Skinner GA, Muir P. Site-specific adaptive remodeling of Greyhound metacarpal cortical bone subjected to asymmetrical cyclic loading. Am J Vet Res 2001; 62: 787-793.
  • 44 Jones HH, Priest MD, Hayes WC. et al. Humeral hypertrophy in response to exercise. J Bone Joint Surg 1977; 59A: 204-208.
  • 45 Young DR, Richardson DW, Markel MD. et al. Mechanical and morphometric analysis of the third carpal bone of thoroughbreds. Am J Vet Res 1991; 52: 402-409.
  • 46 Woo SL-Y, Kuei SC, Amiel D. et al. The effect of prolonged physical training on the properties of long bone: a study of Wolff's law. J Bone Joint Surg 1981; 63A: 780-787.
  • 47 Averill SM, Johnson AL, Chambers M. et al. Qualitative and quantitative scintigraphic imaging to predict fracture healing. Vet Comp Orthop Traumatol 1999; 12: 142-150.
  • 48 Kohrt WM. Aging and the osteogenic response to mechanical loading. Int J Sport Nutr Exer Metabol 2001; 11 (Suppl) S137-S142.
  • 49 Zioupos P, Smith CW, An YH. Factors affecting mechanical properties of bone. In Mechanical Testing of Bone and the Bone-Implant Interface. An YH, Draughn RA. (eds). Boca Raton: CRC Press; 2000: 65-85.
  • 50 Krettek C, Hoffman R, Haas N. Stabilization of distal radius fractures - biomechanical testing of K-wire and polydioxanone pins. In: Implant Materials in Biofunction. de Putter C, de Lange GL, de Groot K, Lee AJC. (eds). Amsterdam: Elsevier; 1988: 453-456.
  • 51 Sukhiani Sukhiani, Holmberg DL. Ex vivo biomechan- ical comparison of pin fixation techniques for canine distal femoral physeal fractures. Vet Surg 1997; 26: 398-407.
  • 52 Pelker RR, Friedlaender GE, Marham TC. Bio- mechanical properties of bone allografts. Clin Orthop Relat Res 1983; 174: 54-57.