Subscribe to RSS
DOI: 10.3413/Nukmed-0833-16-06
Detection of obstructive uropathy and assessment of differential renal function using two functional magnetic resonance urography tools
A comparison with diuretic renal scintigraphy in infants and childrenDetektion der obstruktiven Uropathie und Erhebung der seitengetrennten Nierenfunktion mit zwei funktionellen Magnetresonanzurographie VerfahrenEin Vergleich mit der Nierensequenzszintigraphie bei Säuglingen und KindernPublication History
received:
15 June 2016
accepted in revised form:
13 August 2016
Publication Date:
02 January 2018 (online)

Summary
Aim: After detection of obstructive uropathy (OU), the indication for or against surgery is primarily based on the differential renal function (DRF). This is to compare functional magnetic resonance urography (fMRU) with dynamic renal scintigraphy (DRS) to assess OU and DRF in infants and children. Patients, methods: Retrospective analysis in 30 patients (female: 16; male: 14; median age: 5.5 years [0.2-16.5]), divided into subgroup A (age: 0-2 years; n = 16) and B (> 2-17 years; n = 14). fMRU was assessed by measuring renal transit time (RTT) and volumetric DRF with CHOP fMRU tool (CT) and ImageJ MRU plug-in (IJ). OU detection by fMRU was compared with DRS (standard of reference) using areas under the curves (AUC) in ROC analyses. Concordant DRF was assumed if absolute deviation between fMRU and DRS was < 5 %. Results: DRS confirmed fixed OU in 4/31 kidneys (12.9 %) in subgroup A. AUC of CT was 0.94 compared with 0.93 by IJ. Subgroup B showed fixed OU in 1/21 kidneys (4.8 %) with AUCs of 0.98 each. RTT measured neither by CT nor by IJ in confirmed fixed OU was < 1200 s – resulting in negative predictive values of 1.0 each. In subgroup A, DRF was concordant in 81.3 % of the kidneys for CT and DRS compared with 75.0 % for IJ and DRS. In subgroup B, CT and DRS were concordant in 91.7 %, and IJ and DRS in 45.8 % of the kidneys. Conclusion: fMRU accurately excluded fixed OU in infants and children, independent from the software used for quantification. However, assessment of DRF with fMRU deviated from DRS especially in infants who may profit most from early intervention. Thus, fMRU cannot fully replace DRS as primary functional examination. If, for clinical reasons, fMRU is performed in first place and it cannot exclude fixed OU, it should be followed by DRS for validation and DRF quantification.
Zusammenfassung
Ziel: Nach der Detektion einer obstruktiven Uropathie (OU) basiert die Indikation für oder gegen eine chirurgische Intervention v. a. auf der seitengetrennten Nierenfunktion (DRF). In der Studie wurde die funktionelle Magnetresonanzurographie (fMRU) mit der Nierensequenzszintigraphie (DRS) in der Beurteilung von OU und DRF verglichen. Methoden: Retrospektive Studie mit 30 Kindern (weiblich: 16; männlich: 14, medianes Alter:5,5 Jahre [0,2-16,5]) unterteilt in Gruppe A (Alter: 0-2 Jahre; n = 16) und B (> 2-17 Jahre; n = 14). Die fMRU wurde mittels „renal transit time” (RTT) und „volumetric DRF” im CHOP fMRU Tool (CT) und ImageJ MRU Plug-in (IJ) ausgewertet. Die Korrektheit zur OU-Detektion wurde mit der DRS (Referenzstandard) in ROC-Analysen mittels Area under the curve (AUC) verglichen. Eine konkordante DRF lag bei Abweichung von fMRU und DRS < 5 % vor. Ergebnisse: Die DRS bestätigte eine fixierte OU in 4/31 Nieren (12,9 %) in Gruppe A. Die AUC für CT betrug 0,94, für IJ 0,93. In Gruppe B zeigte sich eine fixierte OU in 1/21 Nieren (4,8 %) mit AUCs von je 0,98 für CT und IJ . Weder für CT noch für IJ lag die RTT < 1200 s bei bestätigter fixierter OU - der negative prädik- tive Wert lag somit bei je 1,0. In Gruppe A maßen CT und DRS die DRF in 81,3 % der Nieren konkordant, IJ und DRS in 75,0 %. In Gruppe B waren CT und DRS in 91,7 % konkordant, IJ und DRS in 45,8 %. Schlussfolgerung: Die fMRU konnte eine fixierte OU bei Säuglingen und Kindern unabhängig von der verwendeten Software zuverlässig ausschließen. Allerdings zeigte die fMRU-DRF Abweichungen von der DRS, besonders im wichtigen Alter bis 2 Jahre. Insgesamt kann die fMRU die DRS nicht vollständig als vorrangige funktionelle Bildgebung ersetzen. Wenn sie doch, aus klinischen Gründen, an erster Stelle erfolgt und eine fixierte OU nicht ausschließen kann, sollte eine DRS zur Validierung und DRF-Bestimmung folgen.
Keywords
obstructive uropathy - fMRU - diuretic renal scintigraphy - CHOP fMRU tool - ImageJ MRU plug-in - renal transit timeSchlüsselwörter
obstruktive Uropathie - fMRU - Nierensequenzszintigraphie - CHOP fMRU Tool - ImageJ MRU Plug-in - renal transit time* both authors contributed equally
-
References
- 1 Alzimami K. Assessment of Radiation doses to Paediatric Patients in Computed Tomography Procedures. Pol J Radiol 2014; 79: 344-348.
- 2 Arien AM, Kirsch AJ, Cuda SP. et al. Magnetic resonance urography for diagnosis of pediatric ureteral stricture. J Pediatr Urol 2014; 10: 792-798.
- 3 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310.
- 4 Boss A, Schaefer JF, Martirosian P. et al. [Dynamic magnetic resonance nephrography and urography of uropathies in children]. Rofo 2007; 179: 832-840.
- 5 Claudon M, Durand E, Grenier N. et al. Chronic urinary obstruction: evaluation of dynamic contrast-enhanced MR urography for measurement of split renal function. Radiology 2014; 273: 801-812.
- 6 Dosage Card (version 1.2.2014).. Vienna, Austria: EANM Executive Secretariat; 2014. http://www.eanm.org/docs/EANM_Dosage_Card_040214.pdf
- 7 Furth C, Genseke P, Amthauer H. et al. Evaluation of functional MR-urography in complex obstructive uropathy of infants: comparison to the conventional diagnostic algorithm – a pilot study. Klin Padiatr 2012; 224: 296-302.
- 8 Gordon I, Piepsz A, Sixt R. et al. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med Mol Imaging 2011; 38: 1175-1188.
- 9 Goyal VK. Changes with age in the human kidney. Exp Gerontol 1982; 17: 321-331.
- 10 Grant FD, Gelfand MJ, Drubach LA. et al. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine. Pediatr Radiol 2015; 45: 706-713.
- 11 Grattan-Smith JD, Little SB, Jones RA. MR urography in children: how we do it. Pediatr Radiol 2008; 38 (Suppl. 01) S3-17.
- 12 Jones RA, Perez-Brayfield MR, Kirsch AJ. et al. Renal transit time with MR urography in children. Radiology 2004; 233: 41-50.
- 13 Jones RA, Grattan-Smith JD, Little S. Pediatric magnetic resonance urography. J Magn Reson Imaging 2011; 33: 510-526.
- 14 Kanda T, Fukusato T, Matsuda M. et al. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy. Radiology 2015; 276: 228-232.
- 15 Linday LA, Engle MA, Reidenberg MM. Maturation and renal digoxin clearance. Clin Pharmacol Ther 1981; 30: 735-738.
- 16 Linday LA, Drayer DE, Khan MA. et al. Pubertal changes in net renal tubular secretion of digoxin. Clin Pharmacol Ther 1984; 35: 438-446.
- 17 Mordacq C, Deschildre A, Petyt L. et al. [Chest computed tomography in children: indications, efficiency and effective dose]. Arch Pediatr 2014; 21: 279-286.
- 18 Murata N, Gonzalez-Cuyar LF, Murata K. et al. Macrocyclic and Other Non-Group 1 Gadolinium Contrast Agents Deposit Low Levels of Gadolinium in Brain and Bone Tissue: Preliminary Results From 9 Patients With Normal Renal Function. Invest Radiol 2016; 51: 447-453.
- 19 Nfaoui K, Bentayeb F, El Basraoui O. et al. Evaluation of paediatric X-ray doses in Moroccan university hospitals. Radiat Prot Dosimetry 2010; 142: 238-243.
- 20 O’Reilly PH, Testa HJ, Lawson RS. et al. Diuresis renography in equivocal urinary tract obstruction. Br J Urol 1978; 50: 76-80.
- 21 Perez-Brayfield MR, Kirsch AJ, Jones RA. et al. A prospective study comparing ultrasound, nuclear scintigraphy and dynamic contrast enhanced magnetic resonance imaging in the evaluation of hydronephrosis. J Urol 2003; 170: 1330-1334.
- 22 Reither M, Tuerkay S. [Functional-anatomic evaluation of dilated uropathies in children using combined MR-nephrography and MR-urography compared to renal scintigraphy]. Rofo 2004; 176: 203-214.
- 23 Riccabona M, Simbrunner J, Ring E. et al. Feasibility of MR urography in neonates and infants with anomalies of the upper urinary tract. Eur Radiol 2002; 12: 1442-1450.
- 24 Rohrschneider WK, Haufe S, Wiesel M. et al. Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 2002; 224: 683-694.
- 25 Sulieman A, Vlychou M, Tsougos I. et al. Radiation doses to paediatric patients and comforters undergoing chest X rays. Radiat Prot Dosimetry 2011; 147: 171-175.
- 26 ROTOP Pharmaka AG. Summary of Product Characteristics – Nephromag. 2010 http://www.rotop-pharmaka.de/fileadmin/user_upload/GFIs/MAG-3/SmPC-MAG3-HK-eng-01.pdf
- 27 Guerbet. Summary of Product Characteristics – Dotarem. 2015 http://www.hpra.ie/img/uploaded/swedocuments/LicenseSPC_PA0686-003-002_05032015151039.pdf
- 28 Thomas KE, Wang B. Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 2008; 38: 645-656.
- 29 Wahl EF, Lahdes-Vasama TT, Churchill BM. Estimation of glomerular filtration rate and bladder capacity: the effect of maturation, ageing, gender and size. BJU Int 2003; 91: 255-262.