Thromb Haemost 2018; 118(01): 152-160
DOI: 10.1160/TH17-06-0397
Endothelium and Angiogenesis
Schattauer GmbH Stuttgart

Circulating Angiogenic Mediators in Patients with Moderate and Severe von Willebrand Disease: A Multicentre Cross-Sectional Study

Dafna J. Groeneveld
,
Yvonne V. Sanders
,
Jelle Adelmeijer
,
Evelien P. Mauser-Bunschoten
,
Johanna G. van der Bom
,
Marjon H. Cnossen
,
Karin Fijnvandraat
,
Britta A.P. Laros-van Gorkom
,
Karina Meijer
,
Ton Lisman
,
Jeroen Eikenboom
,
Frank W.G. Leebeek
Further Information

Publication History

07 June 2017

02 October 2017

Publication Date:
05 January 2018 (online)

Abstract

Inhibition of von Willebrand factor (VWF) expression in endothelial cells results in enhanced, possible dysfunctional angiogenesis, consistent with observations of severe gastrointestinal bleedings caused by vascular malformations in patients with von Willebrand disease (VWD). VWF is stored in endothelial Weibel–Palade bodies (WPB) with several other mediators of angiogenesis, like angiopoietin-2, osteoprotegerin and galectin-3. Increased release of angiopoietin-2 has been observed in medium of endothelial cells lacking VWF, but data on circulating levels of angiogenic factors in patients with VWD are lacking. The aim of this study was therefore to investigate plasma levels of angiogenic factors in patients with various types of VWD to obtain more insight into the pathogenesis of vascular malformations in these patients. We hypothesized that VWF deficiency leads to increased circulating levels of other WPB components. We therefore measured plasma levels of the WPB components angiopoietin-2, osteoprotegerin and galectin-3 as well as two other angiogenic factors (angiopoietin-1 and vascular endothelial growth factor [VEGF]) that are not stored within WPB. We observed that various angiogenic mediators are significantly different between types of VWD patients. Type 2A VWD patients had higher angiopoietin-1 levels compared with type 2B patients. Patients who have increased VWF clearance had higher angiopoietin-2 levels, whereas patients who have impaired VWF synthesis had higher galectin-3 levels. VEGF levels were negatively associated with VWF levels as type 3 VWD patients had the highest VEGF levels. However, complete VWF deficiency did not lead to increased circulating levels of other WPB components.

Authors' Contribution

D.J.G designed the research, analysed and interpreted the data, and wrote the manuscript. F.W.G.L. and J.E. designed the research, interpreted the data and critically reviewed the manuscript. Y.V.S. analysed and interpreted the data, and critically reviewed the manuscript. J.A. performed the research and reviewed the manuscript. E.P.M-B., J.G.v.d.B., M.H.C., K.F., B.A.P.L-v.G., K.M. and T.L. interpreted the data and critically reviewed the manuscript. All authors gave their consent to the final version of the manuscript.


WiN Study Group Members

Academic Medical Center, Amsterdam; K. Fijnvandraat, M. Coppens


VU University Medical Center, Amsterdam; A. Kors, S. Zweegman


The Netherlands Hemophilia Society: J. de Meris


Amphia Hospital, Breda: G.J. Goverde, M.H. Jonkers


Catharina Hospital, Eindhoven: N. Dors


Maxima Medical Center, Eindhoven: M.R. Nijziel


University Medical Center Groningen, Groningen: K. Meijer, R.Y.J. Tamminga


Kennemer Gasthuis, Haarlem: P.W. van der Linden


HagaZiekenhuis, The Hague: P.F. Ypma


Leiden University Medical Center, Leiden: J.G. van der Bom, H.C.J. Eikenboom, F.J.W. Smiers


Maastricht University Medical Center, Maastricht: B. Granzen, K. Hamulyák


Radboud University Medical Center, Nijmegen: P. Brons, B.A.P. Laros-van Gorkom


Erasmus University Medical Center, Rotterdam: M.H. Cnossen, F.W.G. Leebeek (principal investigator), Y.V. Sanders


Van Creveld Clinic, University Medical Center Utrecht, Utrecht: E.P. Mauser-Bunschoten (chairman steering committee)


 
  • References

  • 1 Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 1998; 67: 395-424
  • 2 Wagner DD. Cell biology of von Willebrand factor. Annu Rev Cell Biol 1990; 6: 217-246
  • 3 Sporn LA, Chavin SI, Marder VJ, Wagner DD. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 1985; 76 (03) 1102-1106
  • 4 Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J. Functional architecture of Weibel-Palade bodies. Blood 2011; 117 (19) 5033-5043
  • 5 Wagner DD, Saffaripour S, Bonfanti R. , et al. Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell 1991; 64 (02) 403-413
  • 6 Michaux G, Hewlett LJ, Messenger SL. , et al. Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease-causing variants of von Willebrand factor. Blood 2003; 102 (07) 2452-2458
  • 7 Metcalf DJ, Nightingale TD, Zenner HL, Lui-Roberts WW, Cutler DF. Formation and function of Weibel-Palade bodies. J Cell Sci 2008; 121 (Pt 1): 19-27
  • 8 Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84 (02) 289-297
  • 9 Lenting PJ, Casari C, Christophe OD, Denis CV. von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 2012; 10 (12) 2428-2437
  • 10 Fressinaud E, Meyer D. International survey of patients with von Willebrand disease and angiodysplasia. Thromb Haemost 1993; 70 (03) 546
  • 11 Koscielny JK, Latza R, Mürsdorf S. , et al. Capillary microscopic and rheological dimensions for the diagnosis of von Willebrand disease in comparison to other haemorrhagic diatheses. Thromb Haemost 2000; 84 (06) 981-988
  • 12 Randi AM, Laffan MA, Starke RD. Von Willebrand factor, angiodysplasia and angiogenesis. Mediterr J Hematol Infect Dis 2013; 5 (01) e2013060
  • 13 Leebeek FW, Eikenboom JC. Von Willebrand's disease. N Engl J Med 2016; 375 (21) 2067-2080
  • 14 Starke RD, Ferraro F, Paschalaki KE. , et al. Endothelial von Willebrand factor regulates angiogenesis. Blood 2011; 117 (03) 1071-1080
  • 15 Groeneveld DJ, van Bekkum T, Dirven RJ. , et al. Angiogenic characteristics of blood outgrowth endothelial cells from patients with von Willebrand disease. J Thromb Haemost 2015; 13 (10) 1854-1866
  • 16 Saint-Lu N, Oortwijn BD, Pegon JN. , et al. Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler Thromb Vasc Biol 2012; 32 (04) 894-901
  • 17 Shahbazi S, Lenting PJ, Fribourg C, Terraube V, Denis CV, Christophe OD. Characterization of the interaction between von Willebrand factor and osteoprotegerin. J Thromb Haemost 2007; 5 (09) 1956-1962
  • 18 Fiedler U, Scharpfenecker M, Koidl S. , et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 2004; 103 (11) 4150-4156
  • 19 Maisonpierre PC, Suri C, Jones PF. , et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277 (5322): 55-60
  • 20 Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 2009; 29 (08) 2011-2022
  • 21 Cao Y, Sonveaux P, Liu S. , et al. Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 2007; 67 (08) 3835-3844
  • 22 McGonigle JS, Giachelli CM, Scatena M. Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis 2009; 12 (01) 35-46
  • 23 Markowska AI, Liu FT, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 2010; 207 (09) 1981-1993
  • 24 Randi AM, Laffan MA. Von Willebrand factor and angiogenesis: basic and applied issues. J Thromb Haemost 2017; 15 (01) 13-20
  • 25 de Wee EM, Leebeek FW, Eikenboom JC. Diagnosis and management of von Willebrand disease in The Netherlands. Semin Thromb Hemost 2011; 37 (05) 480-487
  • 26 de Wee EM, Sanders YV, Mauser-Bunschoten EP. , et al; WiN study group. Determinants of bleeding phenotype in adult patients with moderate or severe von Willebrand disease. Thromb Haemost 2012; 108 (04) 683-692
  • 27 Sanders YV, Eikenboom J, de Wee EM. , et al; WiN Study Group. Reduced prevalence of arterial thrombosis in von Willebrand disease. J Thromb Haemost 2013; 11 (05) 845-854
  • 28 Borchiellini A, Fijnvandraat K, ten Cate JW. , et al. Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of 1-deamino-8-D-arginine vasopressin in humans. Blood 1996; 88 (08) 2951-2958
  • 29 Sadler JE, Budde U, Eikenboom JCJ. , et al; Working Party on von Willebrand Disease Classification. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 4 (10) 2103-2114
  • 30 Eikenboom J, Federici AB, Dirven RJ. , et al; MCMDM-1VWD Study Group. VWF propeptide and ratios between VWF, VWF propeptide, and FVIII in the characterization of type 1 von Willebrand disease. Blood 2013; 121 (12) 2336-2339
  • 31 Sanders YV, Groeneveld D, Meijer K. , et al; WiN study group. von Willebrand factor propeptide and the phenotypic classification of von Willebrand disease. Blood 2015; 125 (19) 3006-3013
  • 32 Gritti G, Cortelezzi A, Bucciarelli P. , et al. Circulating and progenitor endothelial cells are abnormal in patients with different types of von Willebrand disease and correlate with markers of angiogenesis. Am J Hematol 2011; 86 (08) 650-656
  • 33 Ferrara N. VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 2009; 20 (04) 158-163
  • 34 Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9 (06) 669-676
  • 35 Ozawa CR, Banfi A, Glazer NL. , et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 2004; 113 (04) 516-527
  • 36 Sadick H, Riedel F, Naim R. , et al. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-beta1 as well as high ALK1 tissue expression. Haematologica 2005; 90 (06) 818-828
  • 37 Junquera F, Saperas E, de Torres I, Vidal MT, Malagelada JR. Increased expression of angiogenic factors in human colonic angiodysplasia. Am J Gastroenterol 1999; 94 (04) 1070-1076
  • 38 Brouwers J, Noviyanti R, Fijnheer R. , et al. Platelet activation determines angiopoietin-1 and VEGF levels in malaria: implications for their use as biomarkers. PLoS One 2013; 8 (06) e64850
  • 39 Nurden P, Gobbi G, Nurden A. , et al. Abnormal VWF modifies megakaryocytopoiesis: studies of platelets and megakaryocyte cultures from patients with von Willebrand disease type 2B. Blood 2010; 115 (13) 2649-2656
  • 40 Shao ES, Lin L, Yao Y, Boström KI. Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 2009; 114 (10) 2197-2206
  • 41 Hannah MJ, Hume AN, Arribas M. , et al. Weibel-Palade bodies recruit Rab27 by a content-driven, maturation-dependent mechanism that is independent of cell type. J Cell Sci 2003; 116 (Pt 19): 3939-3948
  • 42 Yano K, Gale D, Massberg S. , et al. Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 2007; 109 (02) 613-615
  • 43 Yuan L, Chan GC, Beeler D. , et al. A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nat Commun 2016; 7: 10160
  • 44 O'Sullivan JM, Jenkins PV, Rawley O. , et al. Galectin-1 and Galectin-3 Constitute Novel-Binding Partners for Factor VIII. Arterioscler Thromb Vasc Biol 2016; May; 36 (05) 855-63
  • 45 Abshire TC, Federici AB, Alvárez MT. , et al; VWD PN. Prophylaxis in severe forms of von Willebrand's disease: results from the von Willebrand Disease Prophylaxis Network (VWD PN). Haemophilia 2013; 19 (01) 76-81