Thromb Haemost 2018; 118(02): 309-319
DOI: 10.1160/TH17-05-0375
Coagulation and Fibrinolysis
Schattauer GmbH Stuttgart

A Mechanistic Model to Quantify von Willebrand Factor Release, Survival and Proteolysis in Patients with von Willebrand Disease

Myriam Ferrari
,
Federico Galvanin
,
Massimiliano Barolo
,
Viviana Daidone
,
Roberto Padrini
,
Fabrizio Bezzo
,
Alessandra Casonato
Further Information

Publication History

31 May 2017

21 November 2017

Publication Date:
29 January 2018 (online)

Abstract

A reduced von Willebrand factor (VWF) synthesis or survival, or its increased proteolysis, alone or in combination, contributes to the development of von Willebrand disease (VWD).

We describe a new, simple mechanistic model for exploring how VWF behaves in well-defined forms of VWD after its 1-desamino-8-D-arginine vasopressin (DDAVP)-induced release from endothelial cells. We aimed to ascertain whether the model can consistently predict VWF kinetic changes. The study involved 9 patients with VWD types Vicenza (a paradigmatic form with a reduced VWF survival), 8 type 2B, 2 type 2A-I, 1 type 2A-II (associated with an increased VWF proteolysis), and 42 normal controls, whose VWF levels were measured after a 24-hour-long DDAVP test. The rate constants considered were: k 0, associated with the VWF release phase; k 1, illustrating the phase of conversion from high- to low-molecular-weight VWF multimers; and k e, associated with the VWF elimination phase. The amount of VWF released (D) was also measured.

k e and D were significantly higher in O than in non-O blood group controls; k 1 was also higher, but less markedly so. All the parameters were accelerated in type Vicenza, especially k e (p < 0.0001), which explains the significant reduction in VWF half-life. In types 2B and 2A-II, k 1 was one order of magnitude higher than in controls, which explains their loss of large VWF multimers. All parameters except k e were lower in type 2A-I.

The proposed mechanistic model clearly describes the altered biochemical pathways in well-characterized VWD, prompting us to suggest that it might help clarify elusive forms of VWD too.

 
  • References

  • 1 Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 1998; 67: 395-424
  • 2 Ruggeri ZM. Structure and function of von Willebrand factor. Thromb Haemost 1999; 82 (02) 576-584
  • 3 Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 2003; 1 (07) 1335-1342
  • 4 Wagner DD. Cell biology of von Willebrand factor. Annu Rev Cell Biol 1990; 6: 217-246
  • 5 Wagner DD, Marder VJ. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol 1984; 99 (06) 2123-2130
  • 6 Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 1986; 46 (02) 185-190
  • 7 Borchiellini A, Fijnvandraat K, ten Cate JW. , et al. Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of 1-deamino-8-D-arginine vasopressin in humans. Blood 1996; 88 (08) 2951-2958
  • 8 Mannucci PM, Ruggeri ZM, Pareti FI, Capitanio A. 1-Deamino-8-d-arginine vasopressin: a new pharmacological approach to the management of haemophilia and von Willebrands' diseases. Lancet 1977; 1 (8017): 869-872
  • 9 Gralnick HR, Williams SB, Morisato DK. Effect of multimeric structure of the factor VIII/von Willebrand factor protein on binding to platelets. Blood 1981; 58 (02) 387-397
  • 10 Ruggeri ZM, Zimmerman TS. Variant von Willebrand's disease: characterization of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets. J Clin Invest 1980; 65 (06) 1318-1325
  • 11 Furlan M. Von Willebrand factor: molecular size and functional activity. Ann Hematol 1996; 72 (06) 341-348
  • 12 Casonato A, Pontara E, Bertomoro A, Sartorello F, Cattini MG, Girolami A. Von Willebrand factor collagen binding activity in the diagnosis of von Willebrand disease: an alternative to ristocetin co-factor activity?. Br J Haematol 2001; 112 (03) 578-583
  • 13 Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem 1987; 262 (18) 8443-8446
  • 14 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87 (10) 4235-4244
  • 15 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87 (10) 4223-4234
  • 16 Sadler JE, Budde U, Eikenboom JC. , et al; Working Party on von Willebrand Disease Classification. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 4 (10) 2103-2114
  • 17 Lillicrap D. von Willebrand disease: advances in pathogenetic understanding, diagnosis, and therapy. Hematology (Am Soc Hematol Educ Program) 2013; 2013: 254-260
  • 18 Peake I, Goodeve A. Type 1 von Willebrand disease. J Thromb Haemost 2007; 5 (Suppl. 01) 7-11
  • 19 Ruggeri ZM. Type IIB von Willebrand disease: a paradox explains how von Willebrand factor works. J Thromb Haemost 2004; 2 (01) 2-6
  • 20 Favaloro EJ, Pasalic L, Curnow J. Laboratory tests used to help diagnose von Willebrand disease: an update. Pathology 2016; 48 (04) 303-318
  • 21 Favaloro EJ, Grispo L, Exner T, Koutts J. Development of a simple collagen based ELISA assay aids in the diagnosis of, and permits sensitive discrimination between type I and type II, von Willebrand's disease. Blood Coagul Fibrinolysis 1991; 2 (02) 285-291
  • 22 Macfarlane DE, Stibbe J, Kirby EP, Zucker MB, Grant RA, McPherson J. Letter: a method for assaying von Willebrand factor (ristocetin cofactor). Thromb Diath Haemorrh 1975; 34 (01) 306-308
  • 23 Casonato A, Pontara E, Sartorello F. , et al. Identifying type Vicenza von Willebrand disease. J Lab Clin Med 2006; 147 (02) 96-102
  • 24 Casonato A, Pontara E, Sartorello F. , et al. Identifying carriers of type 2N von Willebrand disease: procedures and significance. Clin Appl Thromb Hemost 2007; 13 (02) 194-200
  • 25 Gibaldi M, Perrier B. Pharmacokinetics. New York: Dekker; 1975
  • 26 Gallinaro L, Cattini MG, Sztukowska M. , et al. A shorter von Willebrand factor survival in O blood group subjects explains how ABO determinants influence plasma von Willebrand factor. Blood 2008; 111 (07) 3540-3545
  • 27 Casonato A, Pontara E, Sartorello F. , et al. Reduced von Willebrand factor survival in type Vicenza von Willebrand disease. Blood 2002; 99 (01) 180-184
  • 28 Casonato A, Gallinaro L, Cattini MG. , et al. Reduced survival of type 2B von Willebrand factor, irrespective of large multimer representation or thrombocytopenia. Haematologica 2010; 95 (08) 1366-1372
  • 29 Casonato A, Gallinaro L, Cattini MG. , et al. Type 1 von Willebrand disease due to reduced von Willebrand factor synthesis and/or survival: observations from a case series. Transl Res 2010; 155 (04) 200-208
  • 30 Menache D, Aronson DL, Darr F. , et al; Cooperative Study Groups. Pharmacokinetics of von Willebrand factor and factor VIIIC in patients with severe von Willebrand disease (type 3 VWD): estimation of the rate of factor VIIIC synthesis. Br J Haematol 1996; 94 (04) 740-745
  • 31 Galvanin F, Barolo M, Padrini R, Casonato A, Bezzo F. A model-based approach to the automatic diagnosis of Von Willebrand disease. AIChE J 2014; 60: 1718-1727
  • 32 Galvanin F, Monte A, Casonato A, Padrini R, Barolo M, Bezzo F. Towards model-based diagnosis of von Willebrand disease. Computer-Aided Chem Eng 2014; 33: 583-588
  • 33 Casonato A, De Marco L, Mazzucato M. , et al. A new congenital platelet abnormality characterized by spontaneous platelet aggregation, enhanced von Willebrand factor platelet interaction, and the presence of all von Willebrand factor multimers in plasma. Blood 1989; 74 (06) 2028-2033
  • 34 Mancuso DJ, Tuley EA, Westfield LA. , et al. Structure of the gene for human von Willebrand factor. J Biol Chem 1989; 264 (33) 19514-19527
  • 35 Lyons SE, Bruck ME, Bowie EJW, Ginsburg D. Impaired intracellular transport produced by a subset of type IIA von Willebrand disease mutations. J Biol Chem 1992; 267 (07) 4424-4430
  • 36 Dent JA, Berkowitz SD, Ware J, Kasper CK, Ruggeri ZM. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci U S A 1990; 87 (16) 6306-6310
  • 37 Favaloro EJ. Utility of the von Willebrand factor collagen binding assay in the diagnosis of von Willebrand disease. Am J Hematol 2017; 92 (01) 114-118
  • 38 Gill JC, Endres-Brooks J, Bauer PJ, Marks Jr WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69 (06) 1691-1695
  • 39 Bowen DJ. An influence of ABO blood group on the rate of proteolysis of von Willebrand factor by ADAMTS13. J Thromb Haemost 2003; 1 (01) 33-40
  • 40 Sweeney JD, Hoernig LA. Intraplatelet von Willebrand factor and ABO blood group. Thromb Res 1992; 68 (4-5): 393-398
  • 41 Chen Z, Yang SH, Xu H, Li JJ. ABO blood group system and the coronary artery disease: an updated systematic review and meta-analysis. Sci Rep 2016; 6: 23250
  • 42 Gézsi A, Budde U, Deák I. , et al. Accelerated clearance alone explains ultra-large multimers in von Willebrand disease Vicenza. J Thromb Haemost 2010; 8 (06) 1273-1280
  • 43 Casari C, Du V, Wu YP. , et al. Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B-associated thrombocytopenia. Blood 2013; 122 (16) 2893-2902
  • 44 Casonato A, Daidone V, Galletta E, Bertomoro A. Type 2B von Willebrand disease with or without large multimers: a distinction of the two sides of the disorder is long overdue. PLoS One 2017; 12 (06) e0179566