Thromb Haemost 2005; 94(02): 336-340
DOI: 10.1160/TH05-05-0354
Theme Issue Article
Schattauer GmbH

Blood-brain barrier breakdown during cerebral malaria: Suicide or murder?

Paco Pino
1   INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Paris, France, Centre Hospitalier-Universitaire Pitié-Salpêtrière, Paris, France, Université Pierre et Marie Curie, Paris, France
,
Zacharie Taoufiq
1   INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Paris, France, Centre Hospitalier-Universitaire Pitié-Salpêtrière, Paris, France, Université Pierre et Marie Curie, Paris, France
,
Josiane Nitcheu
1   INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Paris, France, Centre Hospitalier-Universitaire Pitié-Salpêtrière, Paris, France, Université Pierre et Marie Curie, Paris, France
,
Ioanis Vouldoukis
1   INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Paris, France, Centre Hospitalier-Universitaire Pitié-Salpêtrière, Paris, France, Université Pierre et Marie Curie, Paris, France
,
Dominique Mazier
1   INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Paris, France, Centre Hospitalier-Universitaire Pitié-Salpêtrière, Paris, France, Université Pierre et Marie Curie, Paris, France
› Author Affiliations
Financial support: This work was in part supported by VIH-PAL and INSERM-PROGRES. Paco Pino got a scholarship from VIH-PAL, Zacharie Taoufiq was financially supported by the Ministère de l’Education Nationale, de la Recherche et de la Technologie and Josianne Nitcheu was supported by a grant from La Fondation de Treilles (Paris, France).
Further Information

Publication History

Received: 23 May 2005

Accepted after major revision: 01 July 2005

Publication Date:
05 December 2017 (online)

Summary

Cerebral malaria, one of the most serious complicatiof ons Plasmodium falciparum infection, is characterized by the sequestration of parasitized red blood cells (PRBCs) in cerebral microvascular beds. The precise mechanisms involved in the onset of neuropathology remain unknown, but parasite sequestration in the brain, metabolic disturbances, and host immune responses all play a role. Sequestration of PRBCs is mediated by different endothelial cell surface receptors, mainly ICAM-1 and CD36. In vitro studies demonstrated that PRBC adhesion to endothelial cells induces over-expression of various adhesion molecules including ICAM-1, expression of iNOS, oxidative stress and finally apoptosis in endothelial cells. In vivo studies, in humans and in mice models of cerebral malaria brought striking evidence of the implication of brain infiltrating cytotoxic effector CD8T lymphocytes in the development of murine cerebral malaria pathogenesis. These cells probably act by direct cytotoxicity against endothelial cells. Cytotoxicity and apoptosis potentially lead blood-brain-barrier disruption and could contribute to the development of cerebral malaria. We propose a key role for endothelial cells in the pathogenesis of cerebral malaria, both by suicide / apoptosis, and / or by murder / cytotoxicity.

 
  • References

  • 1 WHO. Fact Sheet No. 94. Geneva; 1997.
  • 2 Mazier D, Nitcheu J, Idrissa-Boubou M. Cerebral malaria and immunogenetics. Parasite Immunol 2000; 22: 613-23.
  • 3 Pongponratn E, Turner GD, Day NP. et al. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 2003; 69: 345-59.
  • 4 Craig A, Scherf A. Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 2001; 115: 129-43.
  • 5 Hatabu T, Kawazu S, Aikawa M. et al. Binding of Plasmodium falciparum-infected erythrocytes to the membrane-bound form of Fractalkine/CX3CL1. Proc Natl Acad Sci U S A 2003; 100: 15942-6.
  • 6 Meager A. Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growth Factor Rev 1999; 10: 27-39.
  • 7 Taylor TE, Fu WJ, Carr RA. et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 2004; 10: 143-5.
  • 8 Nitcheu J, Bonduelle O, Combadiere C. et al. Perforin- dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 2003; 170: 2221-8.
  • 9 Favre N, Da Laperousaz C, Ryffel B. et al. Role of ICAM-1 (CD54) in the development of murine cerebral malaria. Microbes Infect 1999; 1: 961-8.
  • 10 Dobbie MS, Hurst RD, Klein NJ. et al. Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factoralpha in an in vitro model of the blood-brain barrier. Brain Res 1999; 830: 330-6.
  • 11 Brown H, Hien TT, Day N. et al. Evidence of bloodbrain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 1999; 25: 331-40.
  • 12 Schofield L, Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 1993; 177: 145-53.
  • 13 Schofield L, Vivas L, Hackett F. et al. Neutralizing monoclonal antibodies to glycosylphosphatidylinositol, the dominant TNF-alpha-inducing toxin of Plasmodium falciparum: prospects for the immunotherapy of severe malaria. Ann Trop Med Parasitol 1993; 87: 617-26.
  • 14 Schofield L, Novakovic S, Gerold P. et al. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol 1996; 156: 1886-96.
  • 15 Clark IA, Alleva LM, Mills AC. et al. Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 2004; 17: 509-39 table of contents.
  • 16 Pino P, Vouldoukis I, Kolb JP. et al. Plasmodium falciparum- infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis 2003; 187: 1283-90.
  • 17 Shin EY, Lee JY, Park MK. et al. Overexpressed alpha3beta1 and constitutively activated extracellular signal-regulated kinase modulate the angiogenic properties of ECV304 cells. Mol Cells 1999; 9: 138-45.
  • 18 Meredith J, Jr. Mu Z, Saido T. et al. Cleavage of the cytoplasmic domain of the integrin beta3 subunit during endothelial cell apoptosis. J Biol Chem 1998; 273: 19525-31.
  • 19 Jimenez B, Volpert OV, Crawford SE. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6: 41-8.
  • 20 Hebert MJ, Gullans SR, Mackenzie HS. et al. Apoptosis of endothelial cells is associated with paracrine induction of adhesion molecules: evidence for an interleukin- 1beta-dependent paracrine loop. Am J Pathol 1998; 152: 523-32.
  • 21 Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 2003; 140-1: 105-12.
  • 22 Ockenhouse CF, Shear HL. Oxidative killing of the intraerythrocytic malaria parasite Plasmodium yoelii by activated macrophages. J Immunol 1984; 132: 424-31.
  • 23 Schirmer RH, Schollhammer T, Eisenbrand G. et al. Oxidative stress as a defense mechanism against parasitic infections. Free Radic Res Commun 1987; 3: 3-12.
  • 24 Taylor DW, Levander OA, Krishna VR. et al. Vitamin E-deficient diets enriched with fish oil suppress lethal Plasmodium yoelii infections in athymic and scid/bg mice. Infect Immun 1997; 65: 197-202.
  • 25 Pino P, Vouldoukis I, Dugas N. et al. Redox-dependent apoptosis in human endothelial cells after Plasmodium falciparum-infected erythrocytes adhesion. Ann NY Acad Sci 2003; 1010: 582.
  • 26 Hemmer CJ, Lehr HA, Westphal K. et al. Plasmodium falciparum Malaria: reduction of endothelial cell apoptosis in vitro. Infect Immun 2005; 73: 1764-70.
  • 27 Pino P, Vouldoukis I, Dugas N. et al. Transient overexpression of superoxide dismutase protects endothelial cells against Plasmodium falciparum-induced pathology/ oxidative stress. Submitted. 2004
  • 28 Belnoue E, Kayibanda M, Vigario AM. et al. On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol 2002; 169: 6369-75.
  • 29 Yanez DM, Manning DD, Cooley AJ. et al. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 1996; 157: 1620-4.
  • 30 MacPherson GG, Warrell MJ, White NJ. et al. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 1985; 119: 385-401.
  • 31 Belnoue E, Kayibanda M, Deschemin JC. et al. CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 2003; 101: 4253-9.
  • 32 Glabinski AR, Tani M, Aras S. et al. Regulation and function of central nervous system chemokines. Int J Dev Neurosci 1995; 13: 153-65.
  • 33 Kennedy KJ, Karpus WJ. Role of chemokines in the regulation of Th1/Th2 and autoimmune encephalomyelitis. J Clin Immunol 1999; 19: 273-9.
  • 34 Madri JA, Graesser D, Haas T. The roles of adhesion molecules and proteinases in lymphocyte transendothelial migration. Biochem Cell Biol 1996; 74: 749-57.
  • 35 Kunkel EJ, Butcher EC. Chemokines and the tissue- specific migration of lymphocytes. Immunity 2002; 16: 1-4.
  • 36 Biedermann BC. Vascular endothelium: checkpoint for inflammation and immunity. News Physiol Sci 2001; 16: 84-8.
  • 37 Bazan JF, Bacon KB, Hardiman G. et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997; 385: 640-4.
  • 38 Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol 2001; 78: 57-110.