Thromb Haemost 2005; 94(02): 240-253
DOI: 10.1160/TH05-05-0335
Theme Issue Article
Schattauer GmbH

The role of reverse genetics systems in studying viral hemorrhagic fevers

Hideki Ebihara
1   Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
5   Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Japan
,
Allison Groseth
2   National Microbiology Laboratory, National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
3   Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
,
Gabriele Neumann
4   Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
,
Yoshihiro Kawaoka
1   Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
4   Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
5   Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Japan
,
Heinz Feldmann
2   National Microbiology Laboratory, National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
3   Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
› Author Affiliations
Further Information

Publication History

Received: 23 May 2005

Accepted after major revision: 05 July 2005

Publication Date:
05 December 2017 (online)

Summary

Viral hemorrhagic fever (VHF) is an infectious syndrome in humans often associated with high fatality rates. For most VHFs there are no specific and effective therapies or vaccines available and, in general, there is a lack of knowledge regarding the biology and pathogenesis of the causative agents. Therefore, a more detailed understanding of the molecular basis ofVHF pathogenesis, including the identification of viral virulence determinants and host interactions and responses, will be important to en-hance our ability to control VHF infections. The recently developed “reverse genetics systems” for severalVHF causing viruses have allowed the generation of infectious viruses from cloned cDNA and thus, the generation of virus mutants. Here we review the existing reverse genetics systems for VHF causing viruses and discuss their use in studying viral replication, pathogenesis, and the development of antivirals and vaccines.

 
  • References

  • 1 Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges. Nat Med. 2004 10. S110-21.
  • 2 Monath TP. Yellow fever: an update. Lancet Infect Dis 2001; 1: 11-20.
  • 3 Nichol ST. In: Bunyaviruses.. Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins; Philadelphia: 2001: 1603-33.
  • 4 Peters CJ, Buchmeier MJ, Rollin PE, Ksiazek TG. In: Arenaviruses.. Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins; Philadelphia: 1996: 1521-52.
  • 5 Sanchez A, Khan AS, Zaki SR, Nabel GJ, Ksiazek TG, Peters CJ. Filoviridae:. Marburg Ebola Viruses, Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins; Philadelphia: 2001: 1279-304.
  • 6 Schnittler HJ, Feldmann H. Viral hemorrhagic fever–a vascular disease?. Thromb Haemost 2003; 89: 967-72.
  • 7 Charrel RN, de Lamballerie X. Arenaviruses other than Lassa virus. Antiviral Res 2003; 57: 89-100.
  • 8 Borio L, Inglesby T, CJ Peters. et al. Working Group on Civilian Biodefense. Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 2002; 287: 2391-405.
  • 9 Conzelmann KK. Reverse genetics of mononegavirales. Curr Top Microbiol Immunol 2004; 283: 1-41.
  • 10 Neumann G, Whitt MA, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA – what have we learned?. J Gen Virol 2002; 83: 2635-62.
  • 11 Kanerva M, Mustonen J, Vaheri A. Pathogenesis of puumala and other hantavirus infections. Rev Med Virol 1998; 8: 67-86.
  • 12 Zaki SR, Greer PW, Coffield LM. et al. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol 1995; 146: 552-79.
  • 13 Ambrosio M, Vallejos A, Saavedra C. et al. Junin virus replication in peripheral blood mononuclear cells of patients with Argentine haemorrhagic fever. Acta Virol 1990; 34: 58-63.
  • 14 Baize S, Kaplon J, Faure C. et al. Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol 2004; 172: 2861-9.
  • 15 Bosio CM, Aman MJ, Grogan C. et al. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 2003; 188: 1630-8.
  • 16 Geisbert TW, Young HA, Jahrling PB. et al. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virusinduced cytolysis of endothelial cells. Am J Pathol 2003; 163: 2371-82.
  • 17 Geisbert TW, Hensley LE, Larsen T. et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 2003; 163: 2347-70.
  • 18 Raftery MJ, Kraus AA, Ulrich R. et al. Hantavirus infection of dendritic cells. J Virol 2002; 76: 10724-33.
  • 19 Wu SJ, Grouard-Vogel G, Sun W. et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 2000; 6: 816-20.
  • 20 Carr JM, Hocking H, Bunting K. et al. Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J Med Virol 2003; 69: 521-8.
  • 21 Feldmann H, Bugany H, Mahner F. et al. Filovirusinduced endothelial leakage triggered by infected monocytes/macrophages. J Virol 1996; 70: 2208-14.
  • 22 Geisbert TW, Young HA, Jahrling PB. et al. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 2003; 188: 1618-29.
  • 23 Schnittler HJ, Feldmann H. Molecular pathogenesis of filovirus infections: role of macrophages and endothelial cells. Curr Top Microbiol Immunol 1999; 235: 175-204.
  • 24 Ströher U, West E, Bugany H. et al. Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 2001; 75: 11025-33.
  • 25 Wahl-Jensen V, Kurz SK, Hazelton PR. et al. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol 2005; 79: 2413-9.
  • 26 Heller MV, Saavedra MC, Falcoff R. et al. Increased tumor necrosis factor-alpha levels in Argentine hemorrhagic fever. J Infect Dis 1992; 166: 1203-4.
  • 27 Mahanty S, Bausch DG, Thomas RL. et al. Low levels of interleukin-8 and interferon-inducible protein- 10 in serum are associated with fatal infections in acute Lassa fever. J Infect Dis 2001; 183: 1713-21.
  • 28 Marta RF, Montero VS, Hack CE. et al. Proinflammatory cytokines and elastase-alpha-1-antitrypsin in Argentine hemorrhagic fever. Am J Trop Med Hyg 1999; 60: 85-9.
  • 29 Geisbert TW, Hensley LE, Gibb TR. et al. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Invest 2000; 80: 171-86.
  • 30 Hensley LE, Young HA, Jahrling PB. et al. Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 2002; 80: 169-79.
  • 31 Mahanty S, Hutchinson K, Agarwal S. et al. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 2003; 170: 2797-801.
  • 32 Gavrilovskaya IN, Peresleni T, Geimonen E. et al. Pathogenic hantaviruses selectively inhibit beta3 integrin directed endothelial cell migration. Arch Virol 2002; 147: 1913-31.
  • 33 Lei HY, Yeh TM, Liu HS. et al. Immunopathogenesis of dengue virus infection. J Biomed Sci 2001; 8: 377-88.
  • 34 Lin CF, Lei HY, Shiau AL. et al. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol 2002; 169: 657-64.
  • 35 Lin CF, Lei HY, Shiau AL. et al. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol 2003; 69: 82-90.
  • 36 Walker DH, McCormick JB, Johnson KM. et al. Pathologic and virologic study of fatal Lassa fever in man. Am J Pathol 1982; 107: 349-56.
  • 37 McCormick JB, Fisher-Hoch SP. Lassa fever. Curr Top Microbiol Immunol 2002; 262: 75-109.
  • 38 Gritsun TS, Nuttall P A, Gould E A. Tick-borne flaviviruses. Adv Virus Res 2003; 61: 317-71.
  • 39 Bowen MD, Trappier SG, Sanchez AJ. et al. A reassortant bunyavirus isolated from acute hemorrhagic fever cases in Kenya and Somalia. Virology 2001; 291: 185-90.
  • 40 Gerrard SR, Li L, Barrett AD. et al. Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa. J Virol 2004; 78: 8922-6.
  • 41 Buchmeier MJ, Bowen MD, Peters CJ. In: Arenaviridae: The viruses and their replication.. Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins; Philadelphia: 2001: 1635-68.
  • 42 Lindenbach BD, Rice CM. Flaviviridae: the virus and their replication.. Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins Philadelphia; 2001: 991-1042.
  • 43 Schmaljohn CS, Hooper JW. In: Bunyaviridae: The viruses and their replication.. Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins; Philadelphia: 2001: 1581-602.
  • 44 Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 1981; 214: 916-9.
  • 45 Ruggli N, Rice CM. Functional cDNA clones of the Flaviviridae: strategies and applications. Adv Virus Res 1999; 53: 183-207.
  • 46 Luytjes W, Krystal M, Enami M. et al. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 1989; 59: 1107-13.
  • 47 Enami M, Luytjes W, Krystal M. et al. Introduction of site-specific mutations into the genome of influenza virus Proc Natl Acad Sci. U S A 1990; 87: 3802-5.
  • 48 Fuerst TR, Niles EG, Studier FW. et al. Ekaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 1986; 83: 8122-6.
  • 49 Pattnaik AK, Ball LA, LeGrone AW. et al. Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 1992; 69: 1011-20.
  • 50 Schnell MJ, Mebatsion T, Conzelmann KK. Infectious rabies viruses from cloned cDNA. Embo J 1994; 13: 4195-203.
  • 51 Bridgen A, Elliott RM. Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 1996; 93: 15400-4.
  • 52 Lindenbach BD, Rice CM. Trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol 1997; 71: 9608-17.
  • 53 Jones CT, Patkar CG, Kuhn RJ. Construction and applications of yellow fever virus replicons. Virology 2005; 331: 247-59.
  • 54 Pang X, Zhang M, Dayton AI. Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. Bmc Microbiol 2001; 1: 18.
  • 55 Lopez N, Muller R, Prehaud C, Bouloy M. The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 1995; 69: 3972-9.
  • 56 Flick K, Hooper JW, Schmaljohn CS. et al. Rescue of Hantaan virus minigenomes. Virology 2003; 306: 219-24.
  • 57 Flick R, Flick K, Feldmann H. et al. Reverse genetics for crimean-congo hemorrhagic fever virus. J Virol 2003; 77: 5997-6006.
  • 58 Lee KJ, Novella IS, Teng MN. et al. NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 2000; 74: 3470-7.
  • 59 Lopez N, Jacamo R. et al. Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 2001; 75: 12241-51.
  • 60 Hass M, Golnitz U, Muller S. et al. Replicon system for Lassa virus. J Virol 2004; 78: 13793-803.
  • 61 Cornu TI, de la Torre JC. Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J Virol 2002; 76: 6678-88.
  • 62 Muhlberger E, Lotfering B, Klenk HD. et al. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 1998; 72: 8756-64.
  • 63 Muhlberger E, Weik M, Volchkov VE. et al. Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 1999; 73: 2333-42.
  • 64 Groseth A, Feldmann H, Theriault S. et al. RNA polymerase I-driven minigenome system for Ebola viruses. J Virol 2005; 79: 4425-33.
  • 65 Hoffmann E, Neumann G, Kawaoka Y. et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci. U S A 2000; 97: 6108-13.
  • 66 Neumann G, Watanabe T, Ito H. et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 1999; 96: 9345-50.
  • 67 Theriault S, Groseth A, Neumann G. et al. Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Res 2004; 106: 43-50.
  • 68 Watanabe S, Watanabe T, Noda T. et al. Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics. J Virol 2004; 78: 999-1005.
  • 69 Noda T, Sagara H, Suzuki E. et al. Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J Virol 2002; 76: 4855-65.
  • 70 Rice CM, Grakoui A, Galler R. et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1989; 1: 285-96.
  • 71 Lai CJ, Zhao BT, Hori H. et al. Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc Natl Acad Sci U S A 1991; 88: 5139-43.
  • 72 Tesh RB, Guzman H, da Rosa AP. et al. Experimental yellow fever virus infection in the Golden Hamster (Mesocricetus auratus). I. Virologic, biochemical, and immunologic studies. J Infect Dis 2001; 183: 1431-6.
  • 73 Munoz-Jordan JL, Sanchez-Burgos GG. Laurent-Rolle et al. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 2003; 100: 14333-8.
  • 74 Leitmeyer KC, Vaughn DW, Watts DM. et al. Dengue virus structural differences that correlate with pathogenesis. J Virol 1999; 73: 4738-47.
  • 75 Cologna R, Rico-Hesse R. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 2003; 77: 3929-38.
  • 76 Pryor MJ, Carr JM, Hocking H. et al. Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am J Trop Med Hyg 2001; 65: 427-34.
  • 77 Neumann G, Feldmann H, Watanabe S. et al. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 2002; 76: 406-10.
  • 78 Volchkov VE, Volchkova VA, Muhlberger E. et al. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 2001; 291: 1965-9.
  • 79 Towner JS, Paragas J, Dover JE. et al. Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and highthroughput antiviral drug screening. Virology 2005; 332: 20-7.
  • 80 Hoenen T, Volchkov V, Kolesnikova L. et al. VP40 octamers are essential for Ebola virus replication. J Virol 2005; 79: 1898-905.
  • 81 Bray M, Davis K, Geisbert T. et al. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis 1999; 179: S248-58.
  • 82 Volchkov VE, Chepurnov AA, Volchkova VA. et al. Molecular characterization of guinea pigadapted variants of Ebola virus. Virology 2000; 277: 147-55.
  • 83 Connolly BM, Steele KE, Davis KJ. et al. Pathogenesis of experimental Ebola virus infection in guinea pigs. J Infect Dis. 1999; 179 (Suppl. 01) S203-17.
  • 84 Feldmann H, Volchkov VE, Volchkova VA. et al. Biosynthesis and role of filoviral glycoproteins. J Gen Virol 2001; 82: 2839-48.
  • 85 Ito H, Watanabe S, Sanchez A. et al. Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 1999; 73: 8907-12.
  • 86 Ito H, Watanabe S, Takada A. et al. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 2001; 75: 1576-80.
  • 87 Takada A, Watanabe S, Ito H. et al. Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 2000; 278: 20-6.
  • 88 Takada A, Watanabe S, Okazaki K. et al. Infectivityenhancing antibodies to Ebola virus glycoprotein. J Virol 2001; 75: 2324-30.
  • 89 Watanabe S, Takada A, Watanabe T. et al. Functional importance of the coiled-coil of the Ebola virus glycoprotein. J Virol 2000; 74: 10194-201.
  • 90 Sanchez A, Trappier SG, Mahy BW. et al. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A 1996; 93: 3602-7.
  • 91 Volchkov VE, Becker S, Volchkova VA. et al. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 1995; 214: 421-30.
  • 92 Sui J, Marasco WA. Evidence against Ebola virus sGP binding to human neutrophils by a specific receptor. Virology 2002; 303: 9-14.
  • 93 Yang Z, Delgado R, Xu L. et al. Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 1998; 279: 1034-7.
  • 94 Barrientos LG, Martin AM, Rollin PE. et al. Disulfide bond assignment of the Ebola virus secreted glycoprotein SGP. Biochem Biophys Res Commun 2004; 323: 696-702.
  • 95 Volchkov VE, Feldmann H, Volchkova VA. et al. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A 1998; 95: 5762-7.
  • 96 Nagai Y, Klenk HD. Activation of precursors to both glycoporteins of Newcastle disease virus by proteolytic cleavage. Virology 1977; 77: 125-34.
  • 97 Rott R. Genetic determinants for infectivity and pathogenicity of influenza viruses. Philos Trans R Soc Lond B Biol Sci 1980; 288: 393-9.
  • 98 Peeters BP, de Leeuw OS, Koch G. et al. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 1999; 73: 5001-9.
  • 99 Horimoto T, Kawaoka Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 1994; 68: 3120-8.
  • 100 Simmons G, Wool-Lewis RJ, Baribaud F. et al. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 2002; 76: 2518-28.
  • 101 Takada A, Fujioka K, Tsuiji M. et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol 2004; 78: 2943-7.
  • 102 Sanchez AJ, Vincent MJ, Nichol ST. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 2002; 76: 7263-75.
  • 103 Alvarez CP, Lasala F, Carrillo J. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 2002; 76: 6841-4.
  • 104 Geijtenbeek TB, Van Vliet SJ, Koppel EA. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 2003; 197: 7-17.
  • 105 Ludwig IS, Lekkerkerker AN, Depla E. et al. Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 2004; 78: 8322-32.
  • 106 Volchkov VE, Blinov VM, Netesov SV. The envelope glycoprotein of Ebola virus contains an immunosuppressive- like domain similar to oncogenic retroviruses. FEBS Lett 1992; 305: 181-4.
  • 107 Ignatyev GM. Immune response to filovirus infections. Curr Top Microbiol Immunol 1999; 235: 205-17.
  • 108 Ahr B, Robert-Hebmann V, Devaux C. et al. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology 2004; 1: 12.
  • 109 Schecter AD, Berman AB, Yi L. et al. HIV envelope gp120 activates human arterial smooth muscle cells. Proc Natl Acad Sci U S A 2001; 98: 10142-7.
  • 110 Takada A, Feldmann H, Ksiazek TG. et al. Antibody- dependent enhancement of Ebola virus infection. J Virol 2003; 77: 7539-44.
  • 111 Basler CF, Palse P. Modulation of Innate Immunity by Filoviruses. Ebola and Marburg Viruses: Molecular and Cellular Biology.. Klenk HD, Feldmann H. Horizon bioscience; Norfolk: 2004
  • 112 Basler CF, Wang X, Muhlberger E. et al. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 2000; 97: 12289-94.
  • 113 Basler CF, Mikulasova A, Martinez-Sobrido L. et al. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 2003; 77: 7945-56.
  • 114 Hartman AL, Towner JS, Nichol ST. A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 2004; 328: 177-84.
  • 115 Huang Y, Xu L, Sun Y. et al. The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 2002; 10: 307-16.
  • 116 Hart MK. Vaccine research efforts for filoviruses. Int J Parasitol 2003; 33: 583-95.
  • 117 Bray M. The role of the type I interferon response in the resistance of mice to filovirus infection. J Gen Virol 2001; 82: 1365-73.
  • 118 Ryabchikova E, Kolesnikova L, Smolina M. et al. Ebola virus infection in guinea pigs: presumable role of granulomatous inflammation in pathogenesis. Arch Virol 1996; 141: 909-21.
  • 119 Chepurnov AA, Zubavichene NM, Dadaeva AA. Elaboration of laboratory strains of Ebola virus and study of pathophysiological reactions of animals inoculated with these strains. Acta Trop 2003; 87: 321-9.
  • 120 Plyusnin A, Kukkonen SK, Plyusnina A. et al. Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. Embo J 2002; 21: 1497-503.
  • 121 Maes P, Clement J, Gavrilovskaya I. et al. Hantaviruses: immunology, treatment, and prevention. Viral Immunol 2004; 17: 481-97.
  • 122 Hevey M, Negley D, Pushko P. et al. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 1998; 251: 28-37.
  • 123 Pushko P, Geisbert J, Parker M. et al. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J Virol 2001; 75: 11677-85.
  • 124 Geisbert TW, Pushko P. Anderson et al. Evaluation in nonhuman primates of vaccines against Ebola virus. Emerg Infect Dis 2002; 8: 503-7.
  • 125 Rose JK, Whitt MA. Rhabdoviridae: The viruses and their replication.. Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins; Philadelphia: 2001: 1221-44.
  • 126 Whelan SP, Ball LA, Barr JN. et al. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A 1995; 92: 8388-92.
  • 127 Lawson ND, Stillman EA, Whitt MA. et al. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 1995; 92: 4477-81.
  • 128 Schnell MJ, Buonocore L, Kretzschmar E. et al. Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 1996; 93: 11359-65.
  • 129 Buonocore L, Blight KJ, Rice CM. et al. Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol 2002; 76: 6865-72.
  • 130 Haglund K, Forman J, Krausslich HG. et al. Expression of human immunodeficiency virus type 1 Gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope. Virology 2000; 268: 112-21.
  • 131 Kahn JS, Schnell MJ, Buonocore L. et al. Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 1999; 254: 81-91.
  • 132 Takada A, Robison C, Goto H. et al. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 1997; 94: 14764-9.
  • 133 Ogino M, Ebihara H, Lee BH. et al. Use of vesicular stomatitis virus pseudotypes bearing hantaan or seoul virusenvelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol 2003; 10: 154-60.
  • 134 Takada A, Feldmann H, Stroeher U. et al. Identification of protective epitopes on ebola virus glycoprotein at the single amino acid level by using recombinant vesicular stomatitis viruses. J Virol 2003; 77: 1069-74.
  • 135 Garbutt M, Liebscher R, Wahl-Jensen V. et al. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J Virol 2004; 78: 5458-65.
  • 136 Jones SM, Feldmann H, Stroher U. et al. Live attenuated recombinant vaccine platform protects nonhuman primates against lethal challenge with either Ebola virus or Marburg virus. Nature Med. 2005 in press.
  • 137 Geisbert TW, Jones S, Fritz EA. et al. Development of a new accelerated vaccine for the prevention of Lassa fever. PLoS. 2005 in press.