References and Notes
<A NAME="RU01608ST-1">1</A>
In Encyclopedia of the Alkaloids
Glasby JS.
Plenum Press;
New York:
1975.
<A NAME="RU01608ST-2A">2a</A>
Jiang B.
Si Y.-G.
Tetrahedron Lett.
2003,
44:
6767
<A NAME="RU01608ST-2B">2b</A>
Wei C.
Li CJ.
J. Am. Chem. Soc.
2002,
124:
5638
<A NAME="RU01608ST-2C">2c</A>
Fischer C.
Carreira EM.
Org. Lett.
2001,
3:
4319
<A NAME="RU01608ST-2D">2d</A>
Saidi MR.
Javanshir S.
Mojtahedi MM.
J. Chem. Res., Synop.
1999,
330
<A NAME="RU01608ST-3">3</A>
Koradin C.
Polborn K.
Knochel P.
Angew. Chem. Int. Ed.
2002,
41:
2535
<A NAME="RU01608ST-4">4</A>
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
1999,
121:
11245
<A NAME="RU01608ST-5A">5a</A>
Sakai N.
Kanada R.
Hirasawa M.
Konakahara T.
Tetrahedron
2005,
61:
9298
<A NAME="RU01608ST-5B">5b</A>
Sakai N.
Hirasawa M.
Konakahara T.
Tetrahedron Lett.
2003,
44:
4171
<A NAME="RU01608ST-5C">5c</A>
Fleming JJ.
Fiori KW.
Du Bois J.
J. Am. Chem. Soc.
2003,
125:
2028
<A NAME="RU01608ST-5D">5d</A>
Barluenga J.
Campos PJ.
Canal G.
Synthesis
1989,
33
<A NAME="RU01608ST-6A">6a</A>
Gommermann N.
Koradin C.
Knochel P.
Synthesis
2002,
2143
<A NAME="RU01608ST-6B">6b</A>
Ahn JH.
Joung MJ.
Yoon NM.
Oniciu DC.
Katritzky AR.
J. Org. Chem.
1999,
64:
488
<A NAME="RU01608ST-7A">7a</A>
Kantam ML.
Balasubrahmanyam V.
Kumar KBS.
Venkanna GT.
Tetrahedron Lett.
2007,
48:
7332
<A NAME="RU01608ST-7B">7b</A>
Kidwai M.
Bansal V.
Mishra NK.
Kumar A.
Mozumdar S.
Synlett
2007,
1581
<A NAME="RU01608ST-7C">7c</A>
Lo VKY.
Liu Y.
Wong MK.
Che CM.
Org. Lett.
2006,
8:
1529
<A NAME="RU01608ST-7D">7d</A>
Wei C.
Li Z.
Li C.-J.
Synlett
2004,
1472
<A NAME="RU01608ST-7E">7e</A>
Black DA.
Arndtsen BA.
Org. Lett.
2004,
6:
1107
<A NAME="RU01608ST-7F">7f</A>
Li C.-J.
Wei C.
Chem. Commun.
2002,
268
<A NAME="RU01608ST-7G">7g</A>
McNally JJ.
Youngman MA.
Dax SL.
Tetrahedron Lett.
1998,
39:
967
For selected papers for the reactions using an alkynylsilane, see:
<A NAME="RU01608ST-8A">8a</A>
Yadav JS.
Raju AK.
Sunitha V.
Tetrahedron Lett.
2006,
47:
5269
<A NAME="RU01608ST-8B">8b</A>
Montel F.
Beaudegnies R.
Kessabi J.
Martin B.
Muller E.
Wendeborn S.
Jung PMJ.
Org. Lett.
2006,
8:
1905
<A NAME="RU01608ST-8C">8c</A>
Kitazawa T.
Minowa T.
Mukaiyama T.
Chem. Lett.
2006,
35:
1002
<A NAME="RU01608ST-8D">8d</A>
Lettan RB.
Scheidt KA.
Org. Lett.
2005,
7:
3227
<A NAME="RU01608ST-8E">8e</A>
Nishihara Y.
Ikegashira K.
Hirabayashi K.
Ando J.-I.
Mori A.
Hiyama T.
J. Org. Chem.
2000,
65:
1780
<A NAME="RU01608ST-8F">8f</A>
Abele E.
Rubina K.
Abele R.
Popelis J.
Mazeika I.
Lukevics E.
J. Organomet. Chem.
1999,
586:
184
<A NAME="RU01608ST-8G">8g</A>
lto H.
Arimoto K.
Sensui H.
Hosomi A.
Tetrahedron Lett.
1997,
38:
3977
<A NAME="RU01608ST-8H">8h</A>
Hayashi M.
Inubushi A.
Mukaiyama T.
Chem. Lett.
1987,
16:
1975
<A NAME="RU01608ST-8I">8i</A>
Ikegashira K.
Nishihara Y.
Hirabayashi K.
Mori A.
Hiyama T.
Chem. Commun.
1997,
1039
<A NAME="RU01608ST-9">9</A>
General Procedure for the Synthesis of a Propargyl Amine: To a MeCN solution (300 µL) in a screw-capped vial under an N2 atmosphere, alkynylsilane 1 (0.45 mmol), aldehyde 2 (0.30 mmol), amine 3 (0.36 mmol), Cu(OTf)2 (5.4 mg, 0.015 mmol) and CuCl (1.5 mg, 0.015 mmol) were successively added, and the
vial was sealed with a cap containing a PTFE septum. The reaction mixture was heated
at 100 °C until the reaction was completed as monitored by TLC. After the reaction,
the mixture was directly subjected to SiO2 gel without the usual extraction, and was purified by flash column chromatography
(hexane-EtOAc) to give the corresponding propargyl amines in the yields shown in Table
[2]
.
1-[1-(4-Methoxyphenyl)-3-phenylpropyn-2-yl]-4-methyl-
piperazine (13): pale yellow oil. 1H NMR (500 MHz, CDCl3): δ = 2.21 (s, 3 H), 2.40 (m, 4 H), 2.59 (m, 4 H), 3.74 (s, 3 H), 4.69 (s, 1 H),
6.82 (d, J = 7.5 Hz, 2 H), 7.23 (m, 3 H), 7.42 (m, 2 H), 7.46 (d, J = 7.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 46.0, 48.8, 55.3, 55.3, 61.0, 85.7, 88.1, 113.4, 113.5, 123.2, 128.0, 128.2,
129.6, 130.4, 131.8, 159.1. MS (EI): m/z = 320. HRMS (FAB): m/z calcd for C21H24N2O: 320.1889; found: 320.1876.
N-(tert-Butyl)-1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-amine (17): colorless oil. 1H NMR (500 MHz, CDCl3): δ = 1.26 (s, 9 H), 3.80 (s, 3 H), 4.80 (s, 1 H), 6.89 (d, J = 7.5 Hz, 2 H), 7.29 (m, 3 H), 7.42 (m, 2 H), 7.51 (d, J = 7.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 29.9, 48.2, 51.2, 55.3, 84.1, 92.8, 113.9, 123.6, 127.9, 128.2, 128.5, 131.4,
135.0, 158.9. MS (EI): m/z = 293. HRMS (FAB): m/z calcd for C20H23NO: 293.1780; found: 293.1785.
<A NAME="RU01608ST-10">10</A>
When a similar coupling reaction was carried out with phenylacetylene, propargylic
amine 4 was obtained in a 61% yield (7 h).
<A NAME="RU01608ST-11A">11a</A>
Bonfield ER.
Li C.-J.
Org. Biomol. Chem.
2007,
5:
435
<A NAME="RU01608ST-11B">11b</A>
Sakaguchi S.
Mizuta T.
Furuwan M.
Kubo T.
Ishii Y.
Chem. Commun.
2004,
1638
<A NAME="RU01608ST-12">12</A>
General Procedure for the Synthesis of a Symmetrical 1,6-Diyne: To a MeCN solution (300 µL) in a screw-capped vial under a N2 atmosphere, alkynylsilane 1 (0.90 mmol), paraformaldehyde 2h (0.90 mmol), primary amine 3 (0.30 mmol), Cu(OTf)2 (5.4 mg, 0.015 mmol) and CuCl (1.5 mg, 0.015 mmol) were successively added, and the
vial was sealed with a cap containing a PTFE septum. The reaction mixture was heated
at 100 °C for 24 h. After the reaction, the mixture was directly subjected to SiO2 gel without the usual extraction, and was purified by flash column chromatography
(hexane-EtOAc) to give the corresponding 1,6-diynes in the yields shown in Table
[3]
.
N-Benzyl-N,N-bis[3-(tert-butyldimethylsilyl)propyn-2-yl]amine (27): colorless oil. 1H NMR (500 MHz, CDCl3):
δ = 0.12 (s, 12 H), 0.96 (s, 18 H), 3.40 (s, 4 H), 3.69 (s, 2 H), 7.32 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = -4.5, 16.5, 26.1, 43.1, 56.9, 88.2, 101.7, 127.3, 128.3, 129.4, 138.0. MS (EI):
m/z = 411. HRMS (FAB): m/z calcd for C25H42NSi2: 412.2856; found: 412.2866.
<A NAME="RU01608ST-13A">13a</A>
Kim I.
Choi J.
Won HK.
Lee GH.
Tetrahedron Lett.
2007,
48:
6863
<A NAME="RU01608ST-13B">13b</A>
Yan B.
Zhou Y.
Zhang H.
Chen J.
Liu Y.
J. Org. Chem.
2007,
72:
7783
<A NAME="RU01608ST-13C">13c</A>
Yan B.
Liu Y.
Org. Lett.
2007,
9:
4323
<A NAME="RU01608ST-13D">13d</A>
Seregin IV.
Schammel AW.
Gevorgyan V.
Org. Lett.
2007,
9:
3433
<A NAME="RU01608ST-13E">13e</A>
Schwier T.
Sromek AW.
Yap DML.
Chernyak D.
Gevorgyan V.
J. Am. Chem. Soc.
2007,
129:
9868
<A NAME="RU01608ST-13F">13f</A>
Seregin IV.
Gevorgyan V.
J. Am. Chem. Soc.
2006,
128:
12050
<A NAME="RU01608ST-14">14</A>
Procedure for the Synthesis of 1-Aminoindolizine 9′: To a MeCN solution (300 µL) in a screw-capped vial under a N2 atmosphere, alkynylsilane 1a (78 mg, 0.45 mmol), aldehyde 2g (48 mg, 0.45 mmol), amine 3a (26 mg, 0.30 mmol) and Cu(OTf)2 (5.4 mg, 0.015 mmol) were successively added, and the vial was sealed with a cap
containing a PTFE septum. The reaction mixture was heated at 100 °C for 1 h. After
the reaction, the mixture was directly subjected to Al2O3 gel without the usual extraction, and was purified by flash column chromatography
(hexane-EtOAc) to give 1-aminoindolizine 9′ in 97% yield (80 mg).
3-Phenyl-1-piperidin-1-ylindolizine (9′): yellow oil. 1H NMR (500 MHz, CDCl3): δ = 1.50 (quint, J = 6.0 Hz, 2 H), 1.71 (quint, J = 6.0 Hz, 4 H), 2.94 (t, J = 6.0 Hz, 4 H), 6.30 (t, J = 7.5 Hz, 1 H), 6.44 (t, J = 7.5 Hz, 1 H), 6.60 (s, 1 H), 7.22 (t, J = 7.5 Hz, 1 H), 7.36 (m, 3 H), 7.47 (d, J = 7.0 Hz, 2 H), 8.11 (d, J = 7.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 24.4, 26.5, 55.2, 105.7, 110.7, 114.3, 118.1, 121.6, 126.7, 127.5, 127.7, 128.6,
128.9, 131.1, 132.6. MS (EI): m/z = 276.
<A NAME="RU01608ST-15">15</A>
Nishihara Y.
Takemura M.
Mori A.
Osakada K.
J. Organomet. Chem.
2001,
620:
282