Erfahrungsheilkunde 2008; 57(3): 176-180
DOI: 10.1055/s-2008-1044030
Übersichten/Reviews

© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Elektromagnetische Wellen in der adjuvanten Krebstherapie

Hermann Berg
Further Information

Publication History

Publication Date:
26 March 2008 (online)

Zusammenfassung

Es werden die heutigen biophysikalischen Möglichkeiten zur Anwendung in der adjuvanten Krebstherapie vorgestellt. Dies sind elektromagnetische Wellen aus dem Niederfrequenz- und Hochfrequenzbereich bis hin zum sichtbaren Licht.

Pulsierende niederfrequente Magnetfelder < 100 Hz erzeugen elektrische Ströme durch induktive oder kapazitative Ankopplung im Krebsgewebe, wodurch dessen Zellmetabolismus vielfältig beeinflusst wird. Hierzu gehören Apoptose, Nekrose, Angiogenesehemmung etc. Bei Einwirkung von Radio- bis zu Mikrowellen überwiegen thermische Zellschädigungen.

Die Laserbelichtung erzeugt ebenfalls Hitzeeffekte. Wenn Farbstoffsensibilisatoren und Licht (Photodynamie) eingesetzt werden, können zelleigene Nukleinsäuren und Enzyme durch Photooxidation selektiv zerstört werden.

Jede dieser Therapien kann synergistisch kombiniert werden: die jeweiligen Therapien untereinander, mit Hyperthermietechniken, mit geeigneten Zytostatika, mit magnetisierbaren Nanopartikeln, statischen Magnetfeldern, Elektroporationen etc.

Ihr Vorteil besteht darin, dass sie nicht invasiv oder nur minimalinvasiv sind.

Abstract

Recent biophysical methods are presented for the application of adjuvant and alternative cancer therapy. These are electromagnetic waves of low-frequency (ELF), high-frequency (HF) to the point of the visible light.

Pulsating low-frequency magnetic fields (PEMF) < 100 Hz or sine fields (SEMF) produce electric currents in the cancer tissue by inductive or capacitative coupling influencing manifoldly the cell metabolism, which include apoptosis, necrosis, inhibition of angiogenesis etc. The effects of radio waves (RF) until microwaves (MW) yield mostly in cell damages.

Laser exposure produces heat destruction as well. The combined action of dye-sensitizers and visible light (photodynamics) destroys nucleic acids and enzymes in cancer cells by oxydation.

A synergistic combination is possible for each of these therapies, namely by several techniques of hyperthermia, with novel cytostatic drugs, magnetic nano-particles, static magnetic fields, or even electroporations.

The advantage of PEMF and SEMF consists of non-invasive or mini-invasive application on patients.

Literatur

  • 01 Ardenne M von. Systemische Krebs-Mehrschritt-Therapie. Hyperthermie und Hyperglykämie als Therapiebasis. Stuttgart; Hippokrates 1997
  • 02 Ayrapetyan S, Markov M, (Eds.). Bioelectromagnetics - current concepts. Berlin; Springer 2006
  • 03 Barnes F, Greenebaum B, (Eds.). Handbook of Biological Effects of Electromagnetic Fields. Vol. 1 Bioengin and Biophysical Aspects. Vol. 2 Biological and Medical Aspects. Boca Raton; CRC Press 2006
  • 04 Berg H. Induction of apoptosis and necrosis in cancer cells and tissues by bioelectromagnetic treatments - review. (in preparation)
  • 05 Berg H. Bioelectric and bioelectromagnetic methods in cancer research and therapy - a survey.  Electromagnetic Biology and Medicine. 2005;  24 423-440
  • 06 Berg H. Milestones of Bioelectromagnetics: Monographs and Proceedings.  Electromagnetic Biology and Medicine. 2004;  23 181-184
  • 07 Berg H. Apoptose - Induktion und Nekrose bei humanen Krebszellen durch elektromagnetische Felder im Vergleich mit gesunden Lymphozyten.  DZO. 2003;  35 75-77
  • 08 Berg H. Synergistische Steigerung des photodynamischen Effektes bei Krebszellen durch elektromagnetische Feldstimulation.  EHK. 2003;  2 84-89
  • 09 Berg H. LF-Electromagnetic field effects on cell metabolism. In: Walz D, Berg H, Milazzo G (Eds.): Bioelectrochemistry of Cells. Basel; Birkhäuser 1995
  • 10 Berg H, Zhang L. Electrostimulation of cell biology by low-frequency electromagnetic fields.  Electro-and Magnetobiology. 1993;  12 147-163
  • 11 Berg H. Photodynamic tumor therapy and cancer multistep therapy.  J Photochem Photobiol. 1988;  28 399
  • 12 Berg H, Bauer E, Gollmick F. et al .Photodynamic hematoporphyrin therapy of psoriasis. In: Jori G, Perria C (Eds.): Photodynamic Therapy of Tumors and Other Diseases. Padova; Edizioni Libreria Progetto 1985: 337-343
  • 13 Berg H, Jungstand W. Photodynamische Wirkung auf das solide Ehrlich-Karzinom.  Naturwissenschaften. 1966;  53 481
  • 14 Binhi V. Magnetobiology - underlying physical problems. San Diego; Academic Press 2002
  • 15 Cameron I, Sun L, Short N, Hardman W, Williams C. Therapeutic elecromagnetic field (TEMF) and gamma Irradiation on human breast cancer xenograft growth, angiogenesis and metastasis.  Cancer Cell Int. 2005;  26 23
  • 16 Chou C. Therapeutic Heating applications of radio frequency energy. In: Barnes F, Greenbaum B (Eds.): Handbook of Biological Effects of Electromagnetic Fields. Berlin; Springer 2006: 413-428
  • 17 Elez R, Piiper A, Kronenberger B, Neumann E. Tumorregression by combination antisense therapy against Plk-1 and Bcl-Oncogene.  2003;  22 69-80
  • 18 Görgün S. Studies on the interaction between electromagnetic fields and living matter neoplastic cellular culture. Frontier Perspec.  Temple University. 1998;  7 44-59
  • 19 Hilger I, Dietmar E, Linß W, Streck S, Kaiser W. Developments of the minimal invasive treatments of tumors by targeted magnetic heating.  J Phys. 2007;  18 2951-2958
  • 20 Hisamitsu T, Narita K, Kasahara T. Induction of apoptosis in human leukemia cells by magnetic fields.  Jpn J Physiol. 1997;  47 307-310
  • 21 Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Barnham; Eurocommunica Publications (UK) 2007
  • 22 Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer.  The Lancet Oncology. 2000;  1 212-219
  • 23 Huang L, Dong L, Chen Y, Qi H, Xiao D. Effects of sinusoidal 50Hz magnetic field on viability cell cycle and apoptosis of HL-60 cells.  Eur Phys J Appl Phys. 2006;  35 217-221
  • 24 Jori G, Perria C, (Eds.). Photodynamic Therapy of Tumors and other Diseases. Padova; Edizioni Libreria Progetto 1985
  • 25 Kirson E, Dbaly V, Tovarys F, Vymazal J, Soustiel F. et al . Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumor.  PNAS. 2007;  104 153-157
  • 26 Kiselev A. Use of artificial magnetic field for rehabilitation of children with malignant tumors.  Vopr Oncol. 2000;  46 469-472
  • 27 Kraus W. Treatment of pathological bone lesion with non-thermal extrem low frequency electromagnetic field.  Bioelectrochem Bioenerg. 1992;  27 321-339
  • 28 Pallares D, Rosch P. Magneto-metabolic therapy for advanced malignancy and cardiomyopathy. In: Rosch P, Markov M (Eds.): Bioelectromagnetic Medicine. New York; Marcel Dekker 2004: 593-612
  • 29 Pang L, Traitcheva N, Gothe G, Camacho J, Berg H. ELF - Electromagnetic Fields Inhibit Proliferation of Human Cancer Cells and Induce Apoptosis.  Electromagnetic Biol and Medic. 2002;  21 243-248
  • 30 Pang L, Baciu C, Traitcheva N, Berg H. Photodynamic effect on Cancer Cells influenced by Electromagnetic Fields.  J Photochem Photobiol. 2001;  64 21-26
  • 31 Radeva M, Angelova P, Traitcheva N, Berg H. Synergisms of Electric or Electromagnetic Fields and Photodynamic Effect Induce Apoptosis of Cancer Cells.  Electrochemistry (China). 2004;  10 260-270
  • 32 Radeva M, Berg H. Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fields.  Bioelectromagnetics. 2004;  25 503-507
  • 33 Radeva M, Berg A, Berg H. Induction of apoptosis and necrosis of cancer cells by electric and electromagnetic fields enhanced by photodynamic active quinoid drugs.  Electromagn Biol Medic. 2004;  23 185-200
  • 34 Rollwitz J, Lupke M, Simko M. Fifty-hertz magnetic field induction of free radical formation in mouse bone marrow-derived promonocytes and macrophages.  Biophys Biochim Acta. 2004;  1674 231-338
  • 35 Rosch P, Markov M, (Eds.). Bioelectromagnetic Medicine. New York; Marcel Dekker 2004
  • 36 Symko M. Induction of cell activation processes by low frequency electromagnetic field.  The Scientific World J. 2004;  4 4-22
  • 37 Tofani S, Cintorino M, Barone D. Increased mouse survival tumor growth inhibition and decreased immunoreactive p53 after exposure to magnetic fields.  Bioelectromagnetics. 2003;  24 148-150
  • 38 Traitcheva N, Angelova P, Radeva M, Berg H. ELF-fields and photooxidation yielding lethal effects on cancer cells.  Bioelectromagnetics. 2003;  24 148-150
  • 39 Williams D, Marko M. Therapeutic electromagnetic field effects on angiogenesis during tumor growth: a pilot study in mice.  Electro-Magnetobiol. 2002;  20 323-329
  • 40 Yamaguchi S, Sato Y, Sekino M, Abe Y, Ueno S. Combination effect of repetive pulse magnetic stimulation and Imatinib mesylate IM on resistant CML cells (Chronic Myelogeneous Leukemia). 9. Meeting of the Bioelectromagnetic Society Kanazawa; 2007
  • 41 Yamaguchi S, Ogiue-Ikeda M, Sekino M, Ueno S. Effect of pulsed magnetic stimulation on tumor development and immune function in mice.  Bioelectromagnetics. 2006;  72 27-64
  • 42 Zhou A, Liu M, Baciu C, Glück B, Berg H. Membrane electroporation increases photodynamic effects.  J Electroanalyt Chem. 2000;  486 220-224

Korrespondenzadresse

Prof. Hermann Berg

Laboratorium Bioelektrochemie

Greifberg 15

07749 Jena

Email: hbergjena@hotmail.com

    >