Fortschr Neurol Psychiatr 2008; 76(7): 402-412
DOI: 10.1055/s-2008-1038206
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Neue Erkenntnisse zur Pathophysiologie der Apraxien durch funktionelle Bildgebung

Functional Imaging Insights into the Pathophysiology of ApraxiaP.  H.  Weiss-Blankenhorn1 , G.  R.  Fink1, 2
  • 1Kognitive Neurologie, Institut für Neurowissenschaften und Biophysik – Medizin (INB-3), Forschungszentrum Jülich
  • 2Klinik und Poliklinik für Neurologie der Universität zu Köln
Further Information

Publication History

Publication Date:
04 July 2008 (online)

Zusammenfassung

Apraxien sind Störungen der motorischen Kognition, die nicht durch basale sensomotorische Defizite oder Störungen der Kommunikation (Aphasien) erklärt werden können. Durch die Häufigkeit der Apraxien (ca. die Hälfte aller Patienten mit linkshemisphärischem Schlaganfall leiden in der Akutphase an einer Apraxie) und deren prognostische Bedeutung für den Erfolg der rehabilitativen Behandlung ergibt sich die Notwendigkeit, die Pathophysiologie der Apraxien besser zu verstehen, um langfristig neue Therapiestrategien zu entwickeln. In den letzten Jahren konnten mithilfe der funktionellen Bildgebung (PET und fMRT) wichtige neue Erkenntnisse zur Pathophysiologie der ideomotorischen Apraxie (gestörter Bewegungsplan) und der ideatorischen Apraxie (gestörte Bewegungskonzeption) gewonnen werden. In dieser Übersichtsarbeit werden beispielhaft die neuralen Substrate für die klinisch zu beobachtende Dissoziation zwischen der Imitation symbolischer und abstrakter Bewegungen (bei der ideomotorischen Apraxie) und des Objekttrigger-Systems (welches bei der ideatorischen Apraxie gestört ist) vorgestellt. Des Weiteren fassen wir neuere Arbeiten zusammen, die komplementäre Funktionen des rechten bzw. linken Parietalkortex bei der räumlichen bzw. zeitlichen Organisation von komplexen, objektbezogenen Handlungen nachweisen. Die Bedeutung des linken parietalen Kortex für die motorische Kognition wird durch Untersuchungen zur Integration von zeitlicher und räumlicher Bewegungsinformation in einen Bewegungsentwurf und zur Erzeugung von Bewegungsplänen unabhängig von der die Bewegung ausführenden Hand unterstützt.

Abstract

Apraxias are disorders of motor cognition that cannot be explained by basic sensorimotor deficits or aphasia. The relatively high frequency of apraxia (approximately half of all patients with left-hemispheric stroke suffer from apraxia during the acute phase) as well as its prognostic value for determining the outcome of rehabilitative therapy clearly convey the necessity of more comprehensive research into the pathophysiology of apraxia in order to develop new therapeutic strategies. In recent years, functional imaging (PET and fMRI) has helped to provide important new insights into the pathophysiology of ideomotor apraxia (defective movement plan) and ideational apraxia (defective action concept). In this review, the neural bases for the clinically observed dissociations between the imitation of abstract and symbolic movements (as in ideomotor apraxia) and for the object-trigger system (which is disturbed in ideational apraxia) will be exemplified. Furthermore, we will recapitulate recent studies that provide evidence for the complementary functions of the right and left parietal cortices in the spatial and temporal organization of complex, object-related actions. The particular importance of the left parietal cortex for motor cognition is further supported by studies examining the integration of spatial and temporal movement information during the generation of a movement plan as well as by the generation of such movement plans in the left parietal cortex independent from the hand that executes the movement.

Literatur

  • 1 Binkofski F, Fink G R. Apraxien.  Nervenarzt. 2005;  76 493-511
  • 2 Goldenberg G. Matching and imitation of hand and finger postures in patients with damage in the left or right hemisphere.  Neuropsychologia. 1999;  37 559-566
  • 3 Donkervoort M, Dekker J, Ende E van den, Stehmann-Saris J C, Deelman B G. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes.  Clinical Rehabilitation. 2000;  14 130-136
  • 4 Hanna-Pladdy B, Heilman K M, Foundas A L. Ecological implications of ideomotor apraxia.  Neurology. 2003;  60 487-490
  • 5 Donkervoort M, Dekker J, Deelman B G. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes.  Clinical Rehabilitation. 2006;  20 1085-1093
  • 6 Weiss-Blankenhorn P H, Fink G R. Therapie der Apraxie. In: Dettmers C, Bülau P, Weiller C, eds. Schlaganfallrehabilitation. Bad Honnef: Hippocampus Verlag 2007: 383-398
  • 7 Goldenberg G, Hagmann S. The meaning of meaningless gestures: A study of visuo-imitative apraxia.  Neuropsychologia. 1997;  35 333-341
  • 8 Bartolo A, Cubelli R, Della Sala S, Drei S, Marchetti C. Double dissociation between meaningful and meaningless gesture reproduction in apraxia.  Cortex. 2001;  37 696-699
  • 9 Rumiati R I, Weiss P H, Tessari A. et al . Common and differential neural mechanisms supporting imitation of meaningful and meaningless actions.  Journal of Cognitive Neuroscience. 2005;  17 1420-1431
  • 10 Tessari A, Rumiati R I. The strategic control of multiple routes in imitation of actions. Journal of Experimental Psychology: Human Perception and Performance 2004
  • 11 Tessari A, Canessa N, Ukmar M, Rumiati R I. Neuropsychological evidence for a strategic control of multiple routes in imitation.  Brain. 2007;  130 1111-1126
  • 12 Goodale M A, Milner A D. Separate visual pathways for perception and action.  Trends in Neuroscience. 1992;  15 20-25
  • 13 Rumiati R I, Weiss P H, Shallice T. et al . Neural basis of pantomiming the use of visually presented objects.  Neuroimage. 2004;  21 1224-1231
  • 14 Cooper R, Shallice T. Contention scheduling and the control of routine activities.  Cognitive Neuropsychology. 2000;  17 297-338
  • 15 Negri G A, Lunardelli A, Reverberi C, Gigli G L, Rumiati R I. Degraded sematic knowledge and accurate object use.  Cortex. 2007;  43 376-388
  • 16 Buxbaum L J, Saffran E M. Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subjects.  Brain and Language. 2002;  82 179-199
  • 17 Buxbaum L J, Schwartz M F, Carew T G. The role of semantic memory in object use.  Cognitive Neuropsychology. 1997;  14 219-254
  • 18 Binkofski F, Dohle C, Posse S. et al . Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study.  Neurology. 1998 May;  50 1253-1259
  • 19 Grefkes C, Weiss P H, Zilles K, Fink G R. Crossmodal processing of object features in human anterior intraparietal cortex: An fMRI study implies equivalencies between humans and monkeys.  Neuron. 2002;  35 173-184
  • 20 Liepmann H. Apraxie.  Ergebnisse der gesamten Medizin. 1920;  1 516-543
  • 21 Weiss P H, Rahbari N N, Lux S, Pietrzyk U, Noth J, Fink G R. Processing the spatial configuration of complex actions involves right posterior parietal cortex: an fMRI study with clinical implications.  Human Brain Mapping. 2006;  27 1004-1014
  • 22 Fink G R, Heide W. Räumlicher Neglect.  Der Nervenarzt. 2004;  4 389-407
  • 23 Halligan P W, Fink G R, Marshall J C, Vallar G. Spatial cognition: evidence from visual neglect.  Trends in Cognitive Sciences. 2003;  7 125-133
  • 24 Hanna-Pladdy B, Daniels S K, Fieselman M A. et al . Praxis lateralization: errors in right and left hemisphere stroke.  Cortex. 2001;  37 219-230
  • 25 Weiss P H, Rahbari N N, Hesse M D, Fink G R. Deficient sequencing of pantomimes in apraxia.  Neurology. 2008;  70 834-840
  • 26 Harrington D L, Haaland K Y. Motor sequencing with left hemisphere damage. Are some cognitive deficits specific to limb apraxia?.  Brain. 1992;  115 857-874
  • 27 Liepmann H. Die linke Hemisphäre und das Handeln.  Münchener Medizinische Wochenschrift. 1905;  52 232 und 2375
  • 28 Assmus A, Marshall J C, Ritzl A, Zilles K, Noth J, Fink G R. Left inferior parietal cortex integrates time and space during collision judgements.  Neuroimage. 2003;  20 S82-S88
  • 29 Assmus A, Marshall J C, Noth J, Zilles K, Fink G R. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex.  Neuroscience. 2005;  132 923-927
  • 30 Weiss P H, Dohle C, Binkofski F, Schnitzler A, Freund H, Hefter H. Motor impairment in patients with parietal lesions: disturbances of meaningless arm movement sequences.  Neuropsychologia. 2001 Jan;  39 397-405
  • 31 Thoenissen D, Zilles K, Toni I. Differential involvement of parietal and precentral regions in movement preparation and motor intention.  Journal of Neuroscience. 2002;  22 9024-9034
  • 32 Toni I, Shah N J, Fink G R, Thoenissen D, Passingham R E, Zilles K. Multiple movement representations in the human brain: An event-related fMRI study.  Journal of Cognitive Neuroscience. 2002;  14 769-784
  • 33 Hesse M D, Thiel C M, Stephan K E, Fink G R. The left parietal cortex and motor intention: An event-related functional magnetic resonance imaging study.  Neuroscience. 2006;  140 1209-1221
  • 34 Posner M I, Petersen S E. The attention system of the human brain.  Annual Review Neurosciences. 1990;  13 25-42
  • 35 Verfaellie M, Heilman K M. Hemispheric asymmetries in attentional control: implications for hand preference in sensorimotor tasks.  Brain and Cognition. 1990;  14 70-80
  • 36 Smania N, Girardi F, Domenicali C, Lora E, Aglioti S. The rehabilitation of limb apraxia: a study in left-brain-damaged patients.  Arch Phys Med Rehabil. 2000;  81 379-388
  • 37 Donkervoort M, Dekker J, Stehmann-Saris J C, Deelman B G. Efficacy of strategy training in left hemisphere stroke patients with apraxia: A randomized clinical trial.  Neuropsychological Rehabilitation. 2001;  11 549-566
  • 38 Goldenberg G, Daumüller M, Hagmann S. Assessment and therapy of complex activities of daily living in apraxia.  Neuropsychological Rehabilitation. 2001;  11 147-169
  • 39 Ward N S, Cohen L G. Mechanisms underlying recovery of motor function after stroke.  Archives of Neurology. 2004;  61 1844-1848
  • 40 Grefkes C, Nowak D A, Eickhoff S B. et al . Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging.  Annals of Neurology. 2008;  63 236-246
  • 41 Nowak D A, Grefkes C, Dafotakis M, Küst J, Karbe H, Fink G R. Improving hand function following stroke: Effects of low frequency rTMS over contralesional motor cortex on movement kinematics and movement-related neural activation.  Archives of Neurology. 2008;  in press
  • 42 Oliveri M, Bisiach E, Brighina F. et al . rTMS of the unaffected hemisphere transiently reduces contralateral visuospatial hemineglect.  Neurology. 2001;  57 1338-1340
  • 43 Oliveri M, Rossini P M, Traversa R. et al . Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage.  Brain. 1999;  122 1731-1739
  • 44 Brighina F, Bisiach E, Oliveri M. et al . 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralesional visuospatial neglect in humans.  Neuroscience Letters. 2003;  336 131-133
  • 45 Shindo K, Sugiyama K, Huabao L, Nishijima K, Kondo T, Izumi S. Long-term effect of low-frequency repetitive transcranial magnetic stimulation over the unaffected posterior parietal cortex in patients with unilateral spatial neglect.  Journal of Rehabilitation Medicine. 2006;  38 65-67
  • 46 Sparing R, Dafotakis M, Meister I G, Thirugnanasambandam N, Fink G R. Enhancing language performance with non-invasive brain stimulation – A transcranial direct current stimulation study in healthy humans.  Neuropsychologia. 2008;  46 261-268
  • 47 Rorden C, Brett M. Stereotaxic display of brain lesions.  Behavioural Neurology. 2000;  12 191-200

Priv-Doz. Dr. med. Peter H. Weiss-Blankenhorn

Kognitive Neurologie, Institut für Neurowissenschaften und Biophysik – Medizin (INB-3), Forschungszentrum Jülich

Leo-Brandt-Straße 5

52425 Jülich

Email: P.H.Weiss@fz-juelich.de

    >