RSS-Feed abonnieren
DOI: 10.1055/s-2008-1038159
Mechanismen der Nikotinabhängigkeit
Mechanisms of Nicotine DependencePublikationsverlauf
Publikationsdatum:
23. April 2008 (online)

Zusammenfassung
In der westlichen Welt rauchen ca. 30 % der Bevölkerung. Die meisten Raucher tun dies, weil sie nikotinabhängig sind. Neben einer intensiven Fortführung der Aufklärung über die gesundheitlichen Folgen des Rauchens und einer Erschwerung des Zigarettenkonsums in der Gesellschaft ist es nötig, die Mechanismen der Nikotinabhängigkeit besser zu verstehen, um effektivere Therapien und Raucherentwöhnungsprogramme zu entwickeln. Diese Übersicht fasst den aktuellen Kenntnisstand über die Mechanismen der Nikotinabhängigkeit zusammen. Im Zentrum stehen zelluläre Effekte von Nikotin sowie die Effekte auf 3 neurophysiologische Funktionssysteme, die bei der Nikotinabhängigkeit eine Rolle spielen: a) Belohnungssystem, b) kognitive Netzwerke und c) Stress-Response-System. Das Belohnungssystem wird durch Nikotin und andere Suchtstoffe aktiviert. Es ist eng mit dem Emotionsregulationssystem verknüpft. Darüber hinaus moduliert Nikotin die kognitiven Netzwerke für Aufmerksamkeit und Lernen/Gedächtnis, wobei die meisten Daten auf kurzfristig günstige Effekte hindeuten. Schließlich beeinflusst Nikotin auch das Stress-Response-System, wobei abhängig vom Stadium der Nikotinabhängigkeit unterschiedliche Effekte resultieren. Die nikotinische Modulation dieser Netzwerke durch Zigarettenrauchen wird wenigstens bei Subpopulationen von Rauchern als Selbstbehandlungsversuch klinischer oder subklinischer Beschwerden in den Bereichen Stimmungsregulation/Depression, Aufmerksamkeit/Gedächtnis und Stress-Bewältigung angesehen.
Abstract
About 30 % of the population in Western societies smoke. Most smokers do so due to nicotine dependence. In concert with ongoing education about the detrimental consequences of tobacco abuse and further restriction of public smoking, further scientific effort is needed to investigate the mechanisms of nicotine dependence, in order to develop more effective treatments and smoking cessation programmes. This review summarises our current knowledge of the mechanisms of nicotine dependence, focussing mainly on the cellular effects of nicotine and the effects on three neurophysiological systems that contribute to nicotine dependence: a) reward system, b) cognition/attentional networks and c) stress response system. The reward system that is connected with the mood regulatory system is activated by nicotine and other addictive substances. Furthermore, nicotine modulates cognitive networks involved in attention and learning/memory. Most data point to positive effects of acute nicotine administration on these networks. Finally nicotine influences the stress response system, however, the effects depend on the stage of nicotine addiction. Nicotinic modulation of these networks by means of smoking may reflect an attempt to self-medicate clinical or subclinical symptoms in the areas of mood regulation/depression, attention and learning/memory and stress coping, at least in a subset of smokers.
Literatur
- 1
Andreas S, Loddenkemper R.
Tabakprävention.
Pneumologie.
2007;
61
588-589
MissingFormLabel
- 2
Raupach T, Nowak D, Hering T. et al .
Rauchen und pneumologische Erkrankungen, positive Effekte der Tabakentwöhnung.
Pneumologie.
2007;
61
11-14
MissingFormLabel
- 3
Andreas S, Herth F JF, Rittmeyer A. et al .
Tabakrauchen, chronisch obstruktive Lungenerkrankung und Lungenkarzinom.
Pneumologie.
2007;
61
590-595
MissingFormLabel
- 4 WHO report on the global tobacco epidemic,. 2008, http://www.who.int/tobacco
MissingFormLabel
- 5
Welte R, König H H, Leidl R.
Cost of health damage and productivity losses attributable to cigarette smoking in
Germany.
Eur J Publ Health.
2000;
10
31-38
MissingFormLabel
- 6
John U, Hanke M.
Tobacco smoking attributable mortality in Germany.
Gesundheitswesen.
2001;
63
363-369
MissingFormLabel
- 7 Batra A. „Leitlinie Tabakentwöhnung”. AWMF online, Leitlinien der Dt. Ges. f. Suchtforschung und Suchttherapie (DG-Sucht)
und der Dt. Ges. f. Psychiatrie, Psychotherapie und Nervenheilkunde (DGPPN) 2004
MissingFormLabel
- 8
Carmelli D, Swan G E, Robinette D. et al .
Genetic influence on smoking – a study of male twins.
N Engl J Med.
1992;
327
829-833
MissingFormLabel
- 9
Edwards K L, Austin M A.
Evidence for genetic influences on smoking in adult women twins.
Clin Genet.
1995;
47
236-244
MissingFormLabel
- 10 Mineur Y S, Picciotto M R. Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. Biochem Pharmacol 2007
MissingFormLabel
- 11
Heath A C, Cates R, Martin N G. et al .
Genetic contribution to risk of smoking initiation: comparison across birth cohorts
and across cultures.
J Subst Abuse.
1993;
5
221-246
MissingFormLabel
- 12
Heath A C, Martin N G.
Genetic models for the natural history of smoking: evidence for a genetic influence
on smoking persistence.
Addict Behav.
1993;
18
19-34
MissingFormLabel
- 13
Hanewinkel R, Sargent J D.
Exposure to smoking in internationally distributed Amercian movies and youth smoking
in Germany: a cross-cultural cohort study.
Pediatrics.
2008;
121
108-117
MissingFormLabel
- 14
Mansvelder H D, McGee D S.
Long-term potentiation of excitatory inputs to brain reward areas by nicotine.
Neuron.
2000;
27
349-357
MissingFormLabel
- 15
Fidler J A, Wardle J, Henning Brodersen N. et al .
Vulnerability to smoking after trying a single cigarette can lie dormant for three
years and more.
Tobacco Control.
2006;
15
205-209
MissingFormLabel
- 16
Lindstom J M.
Nicotinic acetylcholine receptors of muscles and nerves: Comparison of their structures,
functional roles and vulnerability to pathology.
Ann NY Acad Sci.
2003;
998
41-42
MissingFormLabel
- 17
Gotti C, Zoli M, Clementi F.
Brain nicotinic acetylcholine receptors: native subtypes and their relevance.
Trends Phramacol Sci.
2006;
27
482-491
MissingFormLabel
- 18
Lindstrom J.
Nicotinic acetylcholin receptors in health and disease.
Mol Neurobiol.
1997;
15
193-222
MissingFormLabel
- 19
Alkondon M, Pereira E FR, Almeida E LF. et al .
Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic
acetylchloline receptors in CA1 interneurons of rat hippocampus.
Neuropharmacology.
2000;
39
2726-2739
MissingFormLabel
- 20
Wonnacott S, Sidhpura N, Balfour D JK.
Nicotine: from molecular mechanisms to behaviour.
Current Opin Pharmacol.
2005;
5
53-59
MissingFormLabel
- 21
Robinson S E, Vann R E, Britton A F. et al .
Cellular nicotinic receptor desensitization correlates with nicotine-induced acute
behavioural tolerance in rats.
Psychopharmacology.
2007;
192
71-78
MissingFormLabel
- 22
Peng X, Gerzanich V, Anand R. et al .
Nicotine-induced increase in neuronal nicotinic receptors results from a decrease
in the rate of receptor turnover.
Mol Pharmacol.
1994;
46
523-530
MissingFormLabel
- 23
Salette J, Pons S, Devillers-Thiery A. et al .
Nicotine upregulates its own receptors through enhanced intracellular maturation.
Neuron.
2005;
46
595-607
MissingFormLabel
- 24
Dani J A, De Biasi M.
Cellular mechanisms of nicotine addiction.
Pharmacology, Biochemistry and Behavior.
2001;
70
439-446
MissingFormLabel
- 25
Staley J K, Krishnan-Sarin S, Kelly P. et al .
Human tobacco smokers in early abstinence have higher levels of β2 nicotinic acetylcholine receptors than nonsmokers.
J Neurosci.
2006;
26
8707-8714
MissingFormLabel
- 26
Ji D, Lape R, Dani J A.
Timing and location of nicotinic activity enhances or depresses hippocampal synaptic
plasticity.
Neuron.
2001;
31
131-141
MissingFormLabel
- 27
Couey J J, Meredith R M, Spijker S. et al .
Distributed network actions by nicotine increase the threshold for spike-timing dependent
plasticity in prefrontal cortex.
Neuron.
2007;
54
73-87
MissingFormLabel
- 28
Raymond C R.
LTP forms 1, 2 and 3: different mechanism for the “long” in long-term potentiation.
Trends in Neurosci.
2007;
30
167-175
MissingFormLabel
- 29
Chen L, Bohanick J D, Nishihara M. et al .
Dopamin D1/D5 receptor-mediated long-term potentiation of intrinsic excitability in
rat prefrontal cortical neurons: Ca++-dependent intracellular signalling.
J Neurophysiol.
2007;
97
2448-2464
MissingFormLabel
- 30
Inoue Y, Yao L, Hopf W. et al .
Nicotine and ethanol activate protein kinase A synergistically via Giβγ subunits in nucleus acumbens/ventral tegmental cocultures: The role of dopamine D1/D2 and adenosine A2A receptors.
J Pharmacol Exp Ther.
2007;
322
23-29
MissingFormLabel
- 31
Di Chiara G, Bassareo V, Fenu S. et al .
Dopamine and drug addiction: the nucleus accumbens shell connection.
Neuropharmacol.
2004;
47
227-241
MissingFormLabel
- 32
Nakayama H, Numakawa T, Ikeuchi T. et al .
Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase
and CREB in PC12 h cells.
J Neurochem.
2001;
79
489-498
MissingFormLabel
- 33
Ikemoto S.
Dopamine reward circuitry: Two projection systems from the ventral midbrain to the
nucleus accumbens – olfactory tubercle complex.
Brain Res Rev.
2007;
56
27-78
MissingFormLabel
- 34
Pidoplichko V I, De Biasi M, Williams J T. et al .
Nicotine activates and desensitizes midbrain dopamine neurons.
Nature.
1997;
390
401-404
MissingFormLabel
- 35
Ferrari R, Le Novere N, Picciotto M R. et al .
Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local
single nicotine injections.
Eur J Neurosci.
2002;
15
1810-1818
MissingFormLabel
- 36
Balfour D JK, Wright A E, Benwell M EM. et al .
The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine
dependence.
Behav Brain Res.
2000;
113
73-83
MissingFormLabel
- 37
Mansvelder H, Keath J R, McGehee D S.
Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas.
Neuron.
2002;
33
905-919
MissingFormLabel
- 38
Di Chiara G, Imperato A.
Drugs abused by humans preferentially increase synaptic dopamine concentrations in
the mesolimbic system of freely moving rats.
PNAS.
1988;
85
5274-5278
MissingFormLabel
- 39
Imperato A, Mulas A, Di Chiara G.
Nicotine prefrerentially stimulates dopamine release in the limbic system of freely
moving rats.
Eur J Pharmacol.
1986;
132
337-338
MissingFormLabel
- 40
Schilstrom B, Nomikos G G, Nisell M. et al .
N-methyl-D-aspartat receptor antagonism in the ventral tegmental area diminishes the
systemic nicotine-induced dopamine release in the nucleus accumbens.
Neuroscience.
1998;
85
1005-1009
MissingFormLabel
- 41
Dani J A, Radcliffe K A, Pidoplichko V I.
Varations in desensitization of nicotinic acetylcholine receptors from hippocampal
and midbrain dopamine areas.
Eur J Pharmacol.
2000;
393
31-38
MissingFormLabel
- 42
Besson M, Granon S, Mameli-Engvall M. et al .
Long-term effects of chronic nicotine exposure on brain nicotinic receptors.
PNAS.
2007;
104
8155-8160
MissingFormLabel
- 43
Tsoh J H, Humfleet G L, Munoz R F. et al .
Development of major depression after treatment for smoking cessation.
Am J Psychiatry.
2000;
157
368-374
MissingFormLabel
- 44
Glassman A H, Stetner F, Walsh B T. et al .
Heavy smokers, smoking cessation, and clonidine. Results of a double-blind, randomized
trial.
JAMA.
1988;
259
2863-2866
MissingFormLabel
- 45
Keuthen N J, Niaura R S, Borrelli B. et al .
Comorbidity, smoking behavior and treatment outcome.
Psychother Psychosom.
2000;
69
244-250
MissingFormLabel
- 46
Breslau N, Johnson E O.
Predicting smoking cessation and major depression in nicotine-dependent smokers.
Am J Public Health.
2000;
90
1122-1127
MissingFormLabel
- 47
Breslau N, Kilbey M M, Andreski P.
Nicotine dependence and major depression. New evidence from a prospective investigation.
Arch Gen Psychiatry.
1993;
50
31-35
MissingFormLabel
- 48
Heinz A, Schmidt L G, Reischies F M.
Anhedonia in schizophrenic, depressed and alcohol-dependent patients – neurobiological
correlates.
Pharmacopsychiatry.
1994;
27 Suppl 1
7-10
MissingFormLabel
- 49
Cardenas L, Tremblay L K, Naranjo C A. et al .
Brain reward system activity in major depression and comorbid nicotine dependence.
J Pharmacol Exp Ther.
2002;
302
1265-1271
MissingFormLabel
- 50
Levin E D, McClernon F J, Rezvani A H.
Nicotinic effects on cognitive function: behavioral characterization, pharmacological
specification and anatomical localization.
Psychopharmacol.
2006;
184
523-439
MissingFormLabel
- 51
Mansvelder H D, Aerde K I van, Couey J J. et al .
Nicotinic modulation of neuronal networks: from receptors to cognition.
Psychopharmacol.
2006;
184
292-305
MissingFormLabel
- 52
Fujii S, Ji Z, Morita N. et al .
Acute and chronic nicotine exposure differentially facilitate the induction of LTP.
Brain Res.
1999;
846
137-143
MissingFormLabel
- 53
Mann E O, Greenfield S A.
Novel modulatory mechanisms revealed by the sustained application of nicotine in the
guinea-pig hippocampus in vitro.
J Physiol.
2003;
551
539-550
MissingFormLabel
- 54
Ge S, Dani J A.
Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression
or potentiation.
J Neurosci.
2005;
25
6084-6091
MissingFormLabel
- 55
Ohno M, Yamamoto T, Watanabe S.
Blockade of hippocampal nicotinic receptors impairs working memory but not reference
memory in rats.
Pharmacol Biochem Behav.
1993;
45
89-93
MissingFormLabel
- 56
Edwards J A, Wesnes K, Warburton D M. et al .
Evidence of more rapid stimulus evaluation following cigarette smoking.
Addict Behav.
1985;
10
113-126
MissingFormLabel
- 57
Hahn B, Shoaib M, Stolerman I P.
Nicotine-induced enhancement of attention in the five-choice serial reaction time
task. The influence of task demands.
Psychopharmacology (Berl).
2002;
162
129-137
MissingFormLabel
- 58
Hahn B, Sharples C G, Wonnacott S. et al .
Attentional effects of nicotinic agonists in rats.
Neuropharmacology.
2003;
44
1054-1067
MissingFormLabel
- 59
Harris J G, Kongs S, Allensworth D. et al .
Effects of nicotine on cognitive deficits in schizophrenia.
Neuropsychopharmacology.
2004;
29
1378-1385
MissingFormLabel
- 60
Houlihan M E, Pritchard W S, Krieble K K. et al .
Effects of cigarette smoking on EEG spectral-band power, dimensional complexity, and
nonlinearity during reaction time task performance.
Psychophysiology.
1996;
33
740-746
MissingFormLabel
- 61
Houlihan M E, Pritchard W S, Robinson J H.
Faster P300 latency after smoking in visual but not auditory oddball tasks.
Psychopharmacology.
1996b ;
123
231-238
MissingFormLabel
- 62
Rezvani A H, Levin E D.
Cognitive effects of nicotine.
Biol Psychiatry.
2001;
49
258-167
MissingFormLabel
- 63
Sacco K A, Bannon K L, George T P.
Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric
disorders.
J Psychopharmacol.
2004;
18
457-474
MissingFormLabel
- 64
Sherwood N, Kerr J S, Hindmarch I.
Psychomotor performance in smokers following single and repeated doses of nicotine
gum.
Psychopharmacology (Berlin).
1992;
108
432-436
MissingFormLabel
- 65
Stolerman I P, Mirza N R, Hahn B. et al .
Nicotine in an animal model of attention.
Eur J Pharmacol.
2000;
393
147-154
MissingFormLabel
- 66
Wesnes K, Warburton D M.
Effects of smoking on rapid information processing performance.
Neuropsychobiology.
1983;
9
223-229
MissingFormLabel
- 67
Thiel C M, Zilles K, Fink G R.
Nicotine modulates reorienting of visuospatial attention and neural activity in human
parietal cortex.
Neuropsychopharmacology.
2005;
30
810-820
MissingFormLabel
- 68
Lawrence N S, Ross T J, Stein E A.
Cognitive mechanisms of nicotine on visual attention.
Neuron.
2002;
36
539-548
MissingFormLabel
- 69
Hahn B, Ross T J, Yang Y. et al .
Nicotine enhances visuospatial attention by deactivating areas of the resting brain
default network.
J Neurosci.
2007;
27
3477-3489
MissingFormLabel
- 70
Winterer G, Musso F, Beckmann C. et al .
Instability of prefrontal signal processing in schizophrenia.
Am J Psychiatry.
2006a;
163
960-1968
MissingFormLabel
- 71
Winterer G, Coppola R, Goldberg T. et al .
Prefrontal broadband noise, working memory and genetic risk for schizophrenia.
Am J Psychiatry.
2004;
161
90-500
MissingFormLabel
- 72
Winterer G, Egan M F, Kolachana B S. et al .
Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in
schizophrenia.
Biol Psychiatry.
2006b;
60
578-584
MissingFormLabel
- 73
Pomerleau O F, Downey K K, Stelson F W. et al .
Cigarette smoking in adult patients diagnosed with attention deficit hyperactivity
disorder.
J Subst Abuse.
1995;
7
373-378
MissingFormLabel
- 74
de Leon J, Dadvand M, Canuso C. et al .
Schizophrenia and smoking: an epidemiological survey in a state hospital.
Am J Psychiatry.
1995;
152
453-455
MissingFormLabel
- 75
Lasser K, Boyd J W, Woolhandler S. et al .
Smoking and mental illness: a population-based prevalence study.
JAMA.
2000;
284
2606-2610
MissingFormLabel
- 76
Levine E D, Conners C K, Sparrow E. et al .
Nicotine effects on adults with attention-deficit/hyperactivity disorder.
Psychopharmacology (Berlin).
1996;
123
55-63
MissingFormLabel
- 77
Levine Conners C K, Silva D, Canu W. et al .
Effects of chronic nicotine and methylphenidate in adults with ADHD.
Exp Clin Pharmacol.
2001;
9
83-90
MissingFormLabel
- 78
Adler L E, Hoffer L D, Wiser A. et al .
Normalization of auditory physiology by cigarette smoking in schizophrenic patients.
Am J Psychiatry.
1993;
150
1856-1861
MissingFormLabel
- 79
Smith R C, Singh A, Infante M. et al .
Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and
cognition in schizophrenia.
Neuropsychopharmacology.
2002;
27
479-497
MissingFormLabel
- 80
Harris J G, Kongs S, Allensworth D. et al .
Effects of nicotine on cognitive deficits in schizophrenia.
Neuropsychopharmacology.
2004;
29
1378-1385
MissingFormLabel
- 81
Musso F, Bettermann F, Vucurevic G. et al .
Smoking impacts on prefrontal attention network function in young adult brains.
Psychopharmacology.
2007;
191
159-169
MissingFormLabel
- 82
Wessels C, Winterer G.
Nikotin und Gehirnentwicklung.
Nervenarzt.
2008;
79
7-16
MissingFormLabel
- 83
Benowitz N L.
The role of nicotine in smoking-related cardiovascular disease.
Prev Med.
1997;
26
412-417
MissingFormLabel
- 84
Niedermaier O N, Smith M L, Beightol L A. et al .
Influence of cigarette smoking on human autonomic function.
Circulation.
1993;
88
562-571
MissingFormLabel
- 85
Hausberg M, Mark A L, Winniford M D. et al .
Sympathetic and vascular effects of short term passive smoke exposure in healthy nonsmokers.
Circulation.
1997;
96
282-287
MissingFormLabel
- 86
Al Abisi M.
Hypothalamic-pituitary-adrenocortical responses to psychological stress and risk for
smoking relapse.
Int J Psychophysiol.
2006;
59
218-227
MissingFormLabel
- 87
Lovallo W R.
Cortisol secretion patterns in addiction and addiction risk.
Int J Psychpharmacol.
2006;
59
195-202
MissingFormLabel
- 88
Rohleder N, Kirschbaum C.
The hypothalamic-pituitary-adrenal (HPA) axis in habitual smokers.
Int J Psychphysiol.
2006;
59
236-243
MissingFormLabel
- 89
Fuxe K, Andersson K, Eneroth P. et al .
Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications.
Psychoneuroendocrinology.
1989;
14
19-41
MissingFormLabel
- 90
Matta S G, Fu Y, Valentine J D. et al .
Response of the hypothalamo-pituitary-adrenalo axis to nicotine.
Psychoneuroendocrinology.
1998;
23
103-113
MissingFormLabel
- 91
Thorndike F P, Wernicke R, Pearlman M Y. et al .
Nicotine dependence. PTSD symptoms and depression proneness among male and female
smokers.
Addict Behav.
2006;
31
223-231
MissingFormLabel
- 92
Fagen Z M, Mitchum R, Vezina P. et al .
Enhanced nicotinic receptor function and drug abuse vulnerability.
J Neurosci.
2007;
27
8771-8778
MissingFormLabel
- 93
Bilkei-Gorzo A, Racz I, Michel K. et al .
A common genetic predisposition to stress sensitivity and stress-induced nicotine
craving.
Biol Psychiatry.
2007;
im Druck
MissingFormLabel
- 94
Gutkin B S, Dehaene S, Changeux J P.
A neurocomputational hypothesis for nicotine addiction.
PNAS.
2006;
103
1106-1111
MissingFormLabel
- 95
Winterer G, Musso F, Konrad A. et al .
Association of attentional network function with exon 5 variations of the CHRNA4 gene.
Hum Mol Genet.
2007;
16
2165-2174
MissingFormLabel
- 96
Hutchinson K E, Allen D L, Filbey F M. et al .
CHRNA4 and tobacco dependence – from gene regulation to treatment outcome.
Arch Gen Psychiatry.
2007;
64
1078-1086
MissingFormLabel
Bisher erschienene Beiträge aus dieser Serie
- 97
Andreas S. et al .
Tabakrauchen, chronisch obstruktive Lungenerkrankung und Lungenkarzinom.
Pneumologie.
2007;
61
590-595
MissingFormLabel
- 98
Raupach T. et al .
Passivrauchen: Gesundheitliche Folgen, Effekte einer Expositionskarenz und Präventionsaspekte.
Pneumologie.
2008;
62
44-50
MissingFormLabel
- 99
Rosewich M. et al .
Auswirkungen des Aktiv- und Passivrauchens auf die Gesundheit von Kindern und Jugendlichen.
Pneumologie.
2008;
62
423-429
MissingFormLabel
Prof. Dr. med. G. Winterer
Klinik und Poliklinik für Psychiatrie und Psychotherapie, Heinrich-Heine-Universität
Düsseldorf/Rheinische Kliniken Düsseldorf
Bergische Landstr. 2
40629 Düsseldorf
eMail: georg.winterer@uni-duesseldorf.de