Zusammenfassung
Die Schizophrenie ist eine psychische Erkrankung, die mit funktionellen und strukturellen
Abweichungen des Gehirns verbunden ist. Neben globalen Defiziten, wie einer Reduktion
des Gesamthirnvolumens und einer Erweiterung des Ventrikelsystems, finden sich umschriebene
Veränderungen insbesondere im Bereich der grauen Substanz des Frontallappens. Betrachtet
man mögliche Zuflüsse zu diesen Veränderungen, so sind diese teilweise vulnerabilitätsassoziiert,
teilweise assoziiert mit dem Ausbruch der Erkrankung und in Teilen verbunden mit dem
Verlauf der Erkrankung und den hiermit assoziierten Handlungsoptionen. Es wird postuliert,
dass die neurobiologischen Veränderungen der Schizophrenie in verschiedenen Stadien
der Erkrankung (Prodrom, Erstmanifestation und rezidivierender Verlauf) unterschiedlich
sind. Hierbei wird davon ausgegangen, dass eine Hypofunktion des GABAergen Systems
ein wesentlicher Bestandteil der Basisvulnerabilität der Erkrankung ist, dass im nächsten
Schritt eine Destabilisierung des glutamatergen Systems und hier insbesondere des
NMDA-Rezeptor-Systems vorliegt, um zu einer Erstmanifestation einer Schizophrenie
zu führen. Beim Übergang zum rezidivierenden Verlauf sind diese Mechanismen auf Dauer
destabilisiert, so dass eine Rückbildung der Veränderungen in funktioneller und struktureller
Hinsicht erschwert ist. Diese pathophysiologischen Überlegungen können zur Entwicklung
kausal-präventiver pharmakotherapeutischer Maßnahmen führen.
Abstract
Schizophrenia is a psychiatric disease associated with functional und structural brain
abnormalities. Beside global deficits, like a reduction of the whole brain volume
and an enlargement of the ventricular system, there are circumscribed changes especially
in the gray matter of the frontal lobe. Regarding possible causes for these changes
some are related to the vulnerability of the disease, some to the manifestation of
the disorder and some are very likely related to the course of the illness and the
associated treatment options. It is hypothesised that the neurobiological changes
of schizophrenia are different in each stage of the illness ranging from the prodromal
state, over the first manifestation of the illness up to the relapsing course. It
is assumed, that the hypofunction of the gabaergic system is essential to the vulnerability
of the disorder, while a destabilisation of the glutamatergic system especially of
the NMDA-receptor-system forms the next step to first break schizophrenia. When the
illness develops into a relapsing course these mechanisms are destabilised, which
inhibits the recovery from functional und structural changes. The outlined pathophysiological
hypotheses are used to discuss possible causal pharmacological treatment options.
Schlüsselwörter
Schizophrenie - Neurobiologie - Hirnentwicklung
Key words
schizophrenia - neurobiology - brain development
Literatur
- 1
Lawrie S M, Abukmeil S S.
Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric
magnetic resonance imaging studies.
Br J Psychiatry.
1998;
172
110-120
- 2
Nelson M D, Saykin A J, Flashman L A, Riordan H J.
Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging:
a meta-analytic study.
Arch Gen Psychiatry.
1998;
55 (5)
433-440
- 3
Wright I C, Rabe-Hesketh S, Woodruff P W, David A S, Murray R M, Bullmore E T.
Meta-analysis of regional brain volumes in schizophrenia.
Am J Psychiatry.
2000;
157 (1)
16-25
- 4
Falkai P, Schneider-Axmann T, Honer W G, Vogeley K, Schonell H, Pfeiffer U, Scherk H,
Block W, Traber F, Schild H H, Maier W, Tepest R.
MRI study. Influence of genetic loading, obstetric complications and premorbid adjustment
on brain morphology in schizophrenia: a MRI study.
Eur Arch Psychiatry Clin Neurosci.
2003;
253 (2)
92-99
- 5
Block W, Bayer T A, Tepest R, Traber F, Rietschel M, Müller D J, Schulze T G, Honer W G,
Maier W, Schild H H, Falkai P.
Decreased frontal lobe ratio of N-acetyl aspartate to choline in familial schizophrenia:
a proton magnetic resonance spectroscopy study.
Neurosci Lett.
2000;
289 (2)
147-151
- 6
Schneider-Axmann T, Kamer T, Moroni M, Maric N, Tepest R, Dani I, Honer W G, Scherk H,
Rietschel M, Schulze T G, Muller D J, Cordes J, Schonell H, Steinmetz H, Gaebel W,
Vogeley K, Kuhn K U, Wagner M, Maier W, Traber F, Block W, Schild H H, Falkai P.
Relation between cerebrospinal fluid, gray matter and white matter changes in families
with schizophrenia.
J Psychiatr Res.
2006;
40 (7)
646-655
- 7 Kamer T, Schneider-Axmann T, Heimann M, Maric N, Dani I, Tepest R, Honer W G, Scherk H,
Cordes J, Schoenell H, Gaebel W, Vogeley K, Müller D J, Rietschel M, Schulze T G,
Maier W, Steinmetz H, Träber F, Block W, Schild H H, Falkai P. Template Based Analysis
of Gray and White Matter in Lobar Volumes. A Magnetic Resonance Imaging Study on Families
with Schizophrenia. (In Vorbereitung)
- 8
Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer T A, Bogerts B, Honer W G,
Falkai P.
Disturbed gyrification of the prefrontal region in male schizophrenic patients: A
morphometric postmortem study.
Am J Psychiatry.
2000;
157
34-39
- 9
Zilles K, Armstrong E, Schleicher A, Kretschmann H J.
The human pattern of gyrification in the cerebral cortex.
Anat Embryol (Berl).
1988;
179 (2)
173-179
- 10
Falkai P, Honer W G, Kamer T, Dustert S, Vogeley K, Schneider-Axmann T, Dani I, Wagner M,
Maier W, Rietschel M, Müller D, Schulze T, Gaebel W, Cordes J, Schönell H, Schild H H,
Block W, Träber F, Steinmetz H, Tepest R.
Disturbed frontal gyrification within families affected with Schizophrenia.
J Psychiatr Res.
2007;
41 (10)
805-813
- 11
Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K.
The ontogeny of human gyrification.
Cereb Cortex.
1995;
5
56-63
- 12
Falkai P, Tepest R, Honer W G, Dani I, Ahle G, Pfeiffer U, Vogeley K, Schulze T G,
Rietschel M, Cordes J, Schonell H, Gaebel W, Kuhn K U, Maier W, Traber F, Block W,
Schild H H, Schneider-Axmann T.
Shape changes in prefrontal, but not parieto-occipital regions: brains of schizophrenic
patients come closer to a circle in coronal and sagittal view.
Psychiatry Res.
2004a;
132 (3)
261-271
- 13
Job D E, Whalley H C, Johnstone E C, Lawrie S M.
Grey matter changes over time in high risk subjects developing schizophrenia.
Neuroimage.
2005;
25 (4)
1023-1030
- 14
Whalley H C, Simonotto E, Marshall I, Owens D G, Goddard N H, Johnstone E C, Lawrie S M.
Functional disconnectivity in subjects at high genetic risk of schizophrenia.
Brain.
2005;
128
2097-2108
- 15
Falkai P, Tepest R, Schulze T G, Muller D J, Rietschel M, Maier W, Traber F, Block W,
Schild H H, Steinmetz H, Gaebel W, Honer W G, Schneider-Axmann T, Wagner M.
Etiopathogenetic mechanisms in long-term course of schizophrenia.
Pharmacopsychiatry.
2004b;
37 Suppl 2
S136-140
- 16
Kawasaki Y, Vogeley K, Jung V, Tepest R, Hütte H, Schleicher A, Falkai P.
Automatized image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia
- a post mortem study.
Prog Neuropsychopharmacol Biol Psychiatry.
2000;
24
1093-1104
- 17 Tepest R, Vogeley K, Viebahn B, Schneider-Axmann T, Honer W G, Falkai P. Minor
changes of the cytoarchitecture in Brodmann area 9 in schizophrenia: Analyses by a
gray level index method on post mortem tissues. (In Vorbereitung)
- 18
Selemon L D, Goldman-Rakic P S.
The reduced neuropil hypothesis: a circuit based model of schizophrenia.
Biol Psychiatry.
1999;
45 (1)
17-25
- 19
Honer W G, Falkai P, Chen C, Arango V, Mann J J, Dwork A J.
Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental
illness.
Neuroscience.
1999;
91 (4)
1247-1255
- 20
Lewis D A, Lieberman J A.
Catching up on schizophrenia: natural history and neurobiology.
Neuron.
2000;
28 (2)
325-334
- 21
Harrison P J, Owen M J.
Genes for schizophrenia? Recent findings and their pathophysiological implications.
Lancet.
2003;
361
417-419
- 22
Harrison P J, Weinberger D R.
Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence.
Mol Psychiatry.
2005;
10
40-68
- 23
Hoff A L, Sakuma M, Wieneke M, Horon R, Kushner M, DeLisi L E.
Longitudinal neuropsychological follow-up study of patients with first-episode schizophrenia.
Am J Psychiatry.
1999;
156 (9)
1336-1341
- 24
Albus M, Hubmann W, Scherer J, Dreikorn B, Hecht S, Sobizack N, Mohr F.
A prospective 2-year follow-up study of neurocognitive functioning in patients with
first-episode schizophrenia.
Eur Arch Psychiatry Clin Neurosci.
2002;
252 (6)
262-267
- 25
Cahn W, Hulshoff Pol H E, Lems E B, Haren N E van, Schnack H G, Linden J A van der,
Schothorst P F, Engeland H van, Kahn R S.
Brain Volume Changes in First-Episode Schizophrenia: A 1-Year Follow-up Study.
Arch Gen Psychiatry.
2002;
59
1002-1010
- 26
van Haren M EM, Hulshoff Pol H E, Cahn W, Schnack H G, Brans R, Laponder A J, Kahn R S.
Brain Volume changes in 109 patients with schizophrenia compared to 130 control subjects:
A 5-year longitudinal MRI study across the age range.
Schizophrenia Research.
2004;
67 (1)
96
- 27
Scherk H, Falkai P.
Effects of antipsychotics on brain structure.
Current Opinion in Psychiatry.
2006;
19
145-150
- 28
Lieberman J A, Tollefson G D, Charles C, Zipursky R, Sharma T, Kahn R S, Keefe R S,
Green A I, Gur R E, McEvoy J, Perkins D, Hamer R M, Gu H, Tohen M. HGDH Study Group
.
Antipsychotic drug effects on brain morphology in first-episode psychosis.
Arch Gen Psychiatry.
2005;
62 (4)
361-370
- 29
Hurlemann R, Tepest R, Maier W, Falkai P, Vogeley K.
Intact hippocampal gray matter in schizophrenia as revealed by automatized image analysis
postmortem.
Anat Embryol (Berl).
2005;
210 (5 - 6)
513-517
- 30
Falkai P, Honer W G, David S, Bogerts B, Majtenyi C, Bayer T A.
No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study.
Neuropathol Appl Neurobiol.
1999;
25 (1)
8-53
1 Mit freundlicher Unterstützung durch die Deutsche Forschungsgemeinschaft (Fa 241/2-3)
Prof. Dr. med. Peter Falkai
Zentrum Psychosoziale Medizin, Abteilung für Psychiatrie und Psychotherapie, Georg-August-Universität
von-Siebold-Straße 5
37075 Göttingen
Email: pfalkai@gwdg.de