RSS-Feed abonnieren
DOI: 10.1055/s-2008-1038132
Obesitas-Hypoventilationssyndrom – Pathophysiologische Aspekte
Pathophysiology of the Obesity Hypoventilation SyndromePublikationsverlauf
eingereicht 12.1.2008
akzeptiert 4.2.2008
Publikationsdatum:
09. April 2008 (online)

Zusammenfassung
Zur Definition des Obesitas-Hypoventilationssyndroms (OHS) gehören extreme Adipositas (BMI 30 kg/m2), alveoläre Hypoventilation im Wachzustand (PaCO2 > 45 mm Hg, Ausschluss anderer Ursachen der Hypoventilation) und schlafbezogene Atmungsstörungen. Übergewicht beeinträchtigt die Atmung durch eine restriktive Ventilationsstörung, durch eine Verminderung der Kapazität der muskulären Atempumpe und durch eine Störung des Atemantriebs. Die Restriktion alleine reicht zur Erklärung des OHS nicht aus: Es gibt nur eine schwache Korrelation zwischen Körpergewicht und Ausmaß der Hypoventilation oder zwischen der Adipositas und der Thorax-Compliance. Adipositas erhöht die Atemarbeit durch die größere Körpermasse, den erhöhten Sauerstoffbedarf, die reduzierte Zwerchfellbeweglichkeit, die Einengung der oberen Atemwege und die Sauerstoff-Desaturationen, die zu einem Missverhältnis von Sauerstoffbedarf und -angebot führen. Zumindest bei einem Teil der Patienten oder in einem späteren Stadium der Erkrankung kann eine Überbeanspruchung der muskulären Atempumpe durch eine Veränderung der Schwellenwerte der Chemorezeptoren vermieden werden, was zur Hyperkapnie führt. Neben diesen Aspekten kommt dem Leptin Bedeutung in der Pathophysiologie des OHS zu. Beim Menschen korreliert der Leptin-Spiegel mit der Körperfettmasse. Aufgrund einer Leptin-Resistenz scheint jedoch bei übergewichtigen Patienten ein relativer Leptin-Mangel im zentralen Nervensystem zu bestehen. Anders als bei Tieren kann Leptin daher nicht in adäquatem Maße die Ventilation steigern und eine Hyperkapnie verhindern.
Abstract
The obesity hypoventilation syndrome (OHS) is defined by extreme overweight (BMI 30 kg/m2), daytime hypoventilation (PaCO2 > 45 mm Hg, the absence of other known causes of hypoventilation) and sleep-related breathing disorders. Obesity impairs breathing due to a restrictive ventilatory disorder, reduction of the capacity of respiratory muscles and diminishment of the ventilatory response. The restriction cannot serve as the only explanation of OHS because body weight or compliance on the one hand and hypoventilation on the other hand only correlate weakly. Obesity increases the work of breathing by greater body mass with its increased oxygen demand, impaired diaphragmatic mobility, upper airway obstruction, and oxygen desaturation which result in an inadequacy of oxygen demand and supply. The adjustment of the chemoreceptors can avoid the overload on the capacity of the respiratory muscles, at least in a number of patients or in the course of the disease. This disproportion results in hypercapnia. Furthermore, the level of leptin is an important factor in the pathophysiology of OHS. The blood level of leptin correlates with the body fat mass in humans. However, there seems to be a relative leptin deficiency in the brain in overweight humans. Therefore, in contrast to animals, leptin cannot sufficiently increase ventilation in man to avoid hypercapnia.
Literatur
- 1
Berg G, Delaive K, Manfreda J. et al .
The Use of Health-Care Resources in Obesity-Hypoventilation Syndrome.
Chest.
2001;
120
377-383
MissingFormLabel
- 2
Poulain M, Doucet M, Major G C. et al .
The effect of obesity on chronic respiratory diseases: pathophysiology and therapeutic
strategies.
CMAJ.
2006;
174 (9)
1293-1299
MissingFormLabel
- 3
Kessler R, Chaouat A, Schinkewitch P. et al .
The Obesity-Hypoventilation Syndrome Revisited. A Prospective Study of 34 Consecutive
Cases.
Chest.
2001;
120
369-376
MissingFormLabel
- 4
Olson A L, Zwillich C.
The obesity hypoventilation syndrome.
Am J Med.
2005;
118
948-956
MissingFormLabel
- 5
Piper A J, Grunstein R R.
Current perspectives on the obesity hypoventilation syndrome.
Curr Opin Pulm Med.
2007;
13
490-496
MissingFormLabel
- 6
Sharp J T, Henry J P, Sweany S K. et al .
The total work of breathing in normal and obese men.
J Clin Invest.
1964;
43
728-739
MissingFormLabel
- 7
Biring M S, Lewis M I, Liu J T. et al .
Pulmonary physiologic changes of morbid obesity.
Am J Med Sci.
1999;
318
293-297
MissingFormLabel
- 8
Lazarus R, Sparrow D, Weiss S T.
Effects of Obesity and Fat Distribution on Ventilatory Function. The Normative Aging
Study.
Chest.
1997;
111
891-898
MissingFormLabel
- 9
Bradley T D, Rutherford R, Lue F. et al .
Role of Diffuse Airway Obstruction in the Hypercapnia of Obstructive Sleep Apnea.
Am Rev Respir Dis.
1986;
134
920-924
MissingFormLabel
- 10 Rochester D F, Arora N S. Respiratory failure from obesity. In: Mancini M, Lewis B, Contaldo F (eds). Medical Complications of Obesity. London: Academic Press 1980: 183
MissingFormLabel
- 11
Suratt P M, Wilhoit S C, Hsiao H S. et al .
Compliance of chest wall in obese subjects.
J Appl Physiol.
1984;
57
403-407
MissingFormLabel
- 12
Hedenstierna G, Santesson J.
Breathing mechanics, dead space and gas exchange in the extremely obese, breathing
spontaneously and during anaesthesia with intermittent positive pressure ventilation.
Acta Anaesthesiol Scand.
1976;
20
248-254
MissingFormLabel
- 13
Pankow W, Podszus T, Gutheil T. et al .
Expiratory Flow Limitation and Intrinsic Positive End-Expiratory Pressure in Obesity.
J Appl Physiol.
1998;
85
1236-1243
MissingFormLabel
- 14
Weiner P, Waizman J, Weiner M. et al .
Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory
muscle performance.
Thorax.
1998;
53
39-42
MissingFormLabel
- 15
Canoy D, Luben R, Welch A. et al .
Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk Study,
United Kingdom.
Am J Epidemiol.
2004;
159
1140-1149
MissingFormLabel
- 16
Jokic R, Zintel T, Sridhar G. et al .
Ventilatory responses to hypercapnia and hypoxia in relatives of patients with the
obesity hypoventilation syndrome.
Thorax.
2000;
55
940-945
MissingFormLabel
- 17
Pankow W, Hijjeh N, Schuttler F. et al .
Influence of noninvasive positive pressure ventilation on inspiratory muscle activity
in obese subjects.
Eur Respir J.
1997;
10
2847-2852
MissingFormLabel
- 18
Chapman K R, Himal H S, Rebuck A S.
et al. Ventilatory responses to hypercapnia and hypoxia in patients with eucapnic
morbid obesity before and after weight loss.
Clin Sci (Lond).
1990 Jun;
78
541-545
MissingFormLabel
- 19
Zwillich C W, Sutton F D, Pierson D J. et al .
Decreased hypoxic ventilatory drive in the obesity-hypoventilation syndrome.
Am J Med.
1975;
59
343-348
MissingFormLabel
- 20
Leech J A, Onal E, Baer P. et al .
Determinants of hypercapnia in occlusive sleep apnea syndrome.
Chest.
1987;
92
807-813
MissingFormLabel
- 21
Krieger J, Sforza E, Apprill M. et al .
Pulmonary hypertension, hypoxemia, and hypercapnia in obstructive sleep apnea patients.
Chest.
1989;
96
729-737
MissingFormLabel
- 22
Jones J B, Wilhoit S C, Findley L J. et al .
Oxyhemoglobin saturation during sleep in subjects with and without the obesity-hypoventilation
syndrome.
Chest.
1985;
88
9-15
MissingFormLabel
- 23
Chan C S, Grunstein R R, Bye P T. et al .
Obstructive sleep apnea with severe chronic airflow limitation. Comparison of hypercapnic
and eucapnic patients.
Am Rev Respir Dis.
1989;
140
1274-1278
MissingFormLabel
- 24
Berger K I, Ayappa I, Chatr-amontri B. et al .
Obesity hypoventilation syndrome as a spectrum of respiratory disturbances during
sleep.
Chest.
2001;
120
1231-1123
MissingFormLabel
- 25
Rapoport D M, Garay S M, Epstein H. et al .
Hypercapnia in the obstructive sleep apnea syndrome. A reevaluation of the “Pickwickian
syndrome”.
Chest.
1986;
89
627-635
MissingFormLabel
- 26
Berthon-Jones M, Sullivan C E.
Time course of change in ventilatory response to CO2 with long-term CPAP therapy for obstructive sleep apnea.
Am Rev Respir Dis.
1987;
135
144-147
MissingFormLabel
- 27 American Academy of Sleep Medicine .ICSD-2 – International classification of sleep disorders, 2nd ed.: Diagnostic and
coding manual. Westchester, Illinois: American Academy of Sleep Medicine 2005
MissingFormLabel
- 28
Schönhofer B, Rosenbluh J, Voshaar T. et al .
Ergometry separates sleep apnea syndrome from obesity-hypoventilation after therapy
positive pressure ventilation therapy.
Pneumologie.
1997;
51
1115-1119
MissingFormLabel
- 29
Mokhlesi B, Tulaimat A, Faibussowitsch I. et al .
Obesity hypoventilation syndrome: prevalence and predictors in patients with obstructive
sleep apnea.
Sleep Breath.
2007;
11
117-124
MissingFormLabel
- 30
Lo Y L, Jordan A S, Malhotra A. et al .
Genioglossal muscle response to CO2 stimulation during NREM sleep.
Sleep.
2006;
29
470-477
MissingFormLabel
- 31
Fogel R B, Malhotra A, White D P.
Sleep. 2: pathophysiology of obstructive sleep apnoea/hypopnoea syndrome.
Thorax.
2004;
59
159-163
MissingFormLabel
- 32
Pillar G, Malhotra A, Fogel R B. et al .
Upper airway muscle responsiveness to rising PCO2 during NREM sleep.
J Appl Physiol.
2000;
89
1275-1282
MissingFormLabel
- 33
O'Donell C P, Schaub C D, Haines B. et al .
Leptin Prevents Respiratory Depression in Obesity.
Am J Respir Crit Care Med.
1999;
159
1477-1484
MissingFormLabel
- 34
Considine R V, Sinha M K, Heimam M L. et al .
Serum immunoreactive-leptin concentrations in normal-weight and obese humans.
N Engl J Med.
1996;
334
292-295
MissingFormLabel
- 35
Shimura R, Tatsumi K, Nakamura A. et al .
Fat Accumulation, Leptin, and Hypercapnia in Obstructive Sleep Apnea-Hypopnea Syndrome.
Chest.
2005;
127
543-549
MissingFormLabel
- 36
Phipps P R, Starritt E, Caterson I. et al .
Association of serum leptin with hypoventilation in human obesity.
Thorax.
2002;
57
75-76
MissingFormLabel
- 37
Yee B J, Cheung J, Phipps P. et al .
Treatment of obesity hypoventilation syndrome and serum leptin.
Respiration.
2006;
73
209-212
MissingFormLabel
Professor Dr. med. Winfried J. Randerath
Institut für Pneumologie an der Universität Witten/Herdecke, Klinik für Pneumologie
und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien
Aufderhöher Straße 169 – 175
42699 Solingen
eMail: randerath@klinik-bethanien.de