Subscribe to RSS
DOI: 10.1055/s-2008-1038113
Normobare Hypoxie: Aktuelle Implikationen für Pneumologie und Leistungsdiagnostik
Intermittent Hypoxic Training - The State of SciencePublication History
eingereicht 18.12.2007
akzeptiert 22.1.2008
Publication Date:
13 March 2008 (online)

Zusammenfassung
Die „Intermittierende Hypoxie” besitzt als ergänzende Trainingsform ein großes Potenzial. Studien belegen nachweislich eine verbesserte Lungenfunktion und Sauerstoffaufnahmefähigkeit (VO2 max.) bei Anwendung. Die Frage nach neuen Konzepten zur Effizienzsteigerung des Höhentrainings, vor allem in Hinsicht auf den enormen pekuniären und logistischen Aufwand, der für das Höhentraining betrieben wird, stellt sich in den letzten Jahren zunehmend. Das „Intermittierende-Hypoxie-Training” (IHT) ist eine neue und alternative Form des Höhentrainings. Zielsetzung ist die Ökonomisierung des derzeit wirksamsten und am besten evaluierten Prinzips, dem „Live High - Train Low” (LHTL). Hierbei wird versucht das Training im Flachland, das normale Training (TL), durch kurze intensive Aufenthalte in einer normobaren Hypoxie zu ergänzen, mit dem Ziel, bei geringstem Zeit- und Kostenaufwand, eine dem Höhenaufenthalt (LH) assoziierte Erythropoese zu generieren. Die vorliegende Arbeit analysiert die Ergebnisse ausgewählter Studien des IHT in Hinsicht auf Leistungssteigerungen im Allgemeinen und hämatologische Veränderungen im Speziellen.
Abstract
Intermittent hypoxic training (IHT) plays an important role concerning methods of training. Considering the enormous logistic and pecuniary investments for altitude training, there is a high demand for more efficient concepts. The intermittent hypoxic training is a new, alternative form of altitude training. The idea of IHT is to economise the currently most reliable and evaluated method which is known as “live high - train low” (LHTL). Thus, IHT combines a normal training at sea level with short training sessions in a chamber that creates a hypoxic but normobaric environment. Its aim is to initiate a similar level of erythropoesis as that usually achieved through long stays in high altitude with a minimised effort. This study analyses the results of selected studies that deal with IHT, evaluating the performance improvements in general and possible haematological variances/changes specifically.
Literatur
- 1
Levine B D, Stray-Gundersen J.
The effects of altitude training are mediated primarily by acclimatization, rather
than by hypoxic exercise.
Adv Exp Med Biol.
2001;
502
75-88
MissingFormLabel
- 2
Rusko H K, Tikkanen H O, Peltonen J E.
Altitude and endurance training.
J Sports Sci.
2004;
22
928-944; discussion 945
MissingFormLabel
- 3
Brugniaux J V, Schmitt L, Robach P. et al .
Eighteen days of “living high, training low” stimulate erythropoiesis and enhance
aerobic performance in elite middle-distance runners.
J Appl Physiol.
2006;
100
203-211
MissingFormLabel
- 4
Wilber R L, Stray-Gundersen J, Levine B D.
Effect of hypoxic “dose” on physiological responses and sea-level performance.
Med Sci Sports Exerc.
2007;
39
1590-1599
MissingFormLabel
- 5
Levine B D.
Intermittent hypoxic training: fact and fancy.
High Alt Med Biol.
2002;
3
177-193
MissingFormLabel
- 6
Loffredo B M, Glazer J L.
The ergogenics of hypoxia training in athletes.
Curr Sports Med Rep.
2006;
5
203-209
MissingFormLabel
- 7
Zoll J, Ponsot E, Dufour S. et al .
Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments
of selected gene transcripts.
J Appl Physiol.
2006;
100
1258-1266
MissingFormLabel
- 8
Dufour S P, Ponsot E, Zoll J. et al .
Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic
performance capacity.
J Appl Physiol.
2006;
100
1238-1248
MissingFormLabel
- 9
Ponsot E, Dufour S P, Zoll J. et al .
Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial
properties in skeletal muscle.
J Appl Physiol.
2006;
100
1249-1257
MissingFormLabel
- 10
Hamlin M J, Hellemans J.
Effect of intermittent normobaric hypoxic exposure at rest on haematological, physiological,
and performance parameters in multi-sport athletes.
J Sports Sci.
2007;
25
431-441
MissingFormLabel
- 11
Katayama K, Matsuo H, Ishida K. et al .
Intermittent hypoxia improves endurance performance and submaximal exercise efficiency.
High Alt Med Biol.
2003;
4
291-304
MissingFormLabel
- 12
Julian C G, Gore C J, Wilber R L. et al .
Intermittent normobaric hypoxia does not alter performance or erythropoietic markers
in highly trained distance runners.
J Appl Physiol.
2004;
96
1800-1807
MissingFormLabel
- 13
Vallier J M, Chateau P, Guezennec C Y.
Effects of physical training in a hypobaric chamber on the physical performance of
competitive triathletes.
Eur J Appl Physiol Occup Physiol.
1996;
73
471-478
MissingFormLabel
- 14
Roels B, Millet G P, Marcoux C J. et al .
Effects of hypoxic interval training on cycling performance.
Med Sci Sports Exerc.
2005;
37
138-146
MissingFormLabel
- 15
Morton J P, Cable N T.
Effects of intermittent hypoxic training on aerobic and anaerobic performance.
Ergonomics.
2005;
48
1535-1546
MissingFormLabel
- 16
Rodriguez F A, Truijens M J, Townsend N E. et al .
Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic
exposure plus sea level training.
J Appl Physiol.
2007;
103
1523-1535
MissingFormLabel
- 17
Villa J G, Lucia A, Marroyo J A. et al .
Does intermittent hypoxia increase erythropoiesis in professional cyclists during
a 3-week race?.
Can J Appl Physiol.
2005;
30
61-73
MissingFormLabel
- 18
Eckardt K U, Kurtz A, Bauer C.
Triggering of erythropoietin production by hypoxia is inhibited by respiratory and
metabolic acidosis.
Am J Physiol.
1990;
258
R678-683
MissingFormLabel
- 19
Gilbert C.
Hyperventilation and the body.
Accid Emerg Nurs.
1999;
7
130-140
MissingFormLabel
- 20
Hoppeler H, Vogt M.
Muscle tissue adaptations to hypoxia.
J Exp Biol.
2001;
204
3133-3139
MissingFormLabel
- 21
Mairbaurl H, Schobersberger W, Oelz O. et al .
Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated
2,3-diphosphoglycerate.
J Appl Physiol.
1990;
68
1186-1194
MissingFormLabel
- 22
Messonnier L, Geyssant A, Hintzy F. et al .
Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the
maximum rate of oxygen uptake.
Eur J Appl Physiol.
2004;
92
470-476
MissingFormLabel
- 23
Boning D.
Altitude and hypoxia training - a short review.
Int J Sports Med.
1997;
18
565-570
MissingFormLabel
- 24
Takahashi H, Asano K, Nakayama H.
Effect of endurance training under hypoxic condition on oxidative enzyme activity
in rat skeletal muscle.
Appl Human Sci.
1996;
15
111-114
MissingFormLabel
- 25
Takahashi H, Kikuchi K, Nakayama H.
Effect of chronic hypoxia on oxidative enzyme activity in rat skeletal muscle.
Ann Physiol Anthropol.
1993;
12
363-369
MissingFormLabel
- 26
Terrados N, Jansson E, Sylven C. et al .
Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin?.
J Appl Physiol.
1990;
68
2369-2372
MissingFormLabel
- 27
Simon L M, Liu J, Theodore J. et al .
Effect of hyperoxia, hypoxia, and maturation on superoxide dismutase activity in isolated
alveolar macrophages.
Am Rev Respir Dis.
1977;
115
279-284
MissingFormLabel
Norman Schöffel
Institut für Arbeitsmedizin, Charité - Universitätsmedizin Berlin, Freie Universität
Berlin und Humboldt-Universität zu Berlin
Ostpreußendamm 111
12207 Berlin
Email: norman.schoeffel@charite.de