References and Notes
For representative examples and seminal references, see:
<A NAME="RD33507ST-1A">1a</A>
Fürstner A.
Davies PW.
Angew Chem. Int. Ed.
2007,
46:
3410
<A NAME="RD33507ST-1B">1b</A>
Gorin DJ.
Toste D.
Nature (London)
2007,
446:
395
<A NAME="RD33507ST-1C">1c</A>
Hashmi ASK.
Hutchings GJ.
Angew Chem. Int. Ed.
2006,
45:
7896
<A NAME="RD33507ST-1D">1d</A>
Jiménez-Núñez E.
Echavarren AM.
Chem. Commun.
2007,
333
<A NAME="RD33507ST-1E">1e</A>
Ma S.
Yu S.
Gu Z.
Angew. Chem. Int. Ed.
2006,
45:
200
<A NAME="RD33507ST-1F">1f</A>
Hashmi ASK.
Angew. Chem. Int. Ed.
2005,
44:
6090
<A NAME="RD33507ST-1G">1g</A>
Hoffmann-Röder A.
Krause N.
Org. Biomol. Chem.
2005,
3:
387
<A NAME="RD33507ST-1H">1h</A>
Hashmi ASK.
Gold Bull.
2004,
37:
51
<A NAME="RD33507ST-1I">1i</A>
Pyykkö P.
Angew. Chem. Int. Ed.
2004,
43:
4412
<A NAME="RD33507ST-1J">1j</A>
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
<A NAME="RD33507ST-1K">1k</A>
Shaw CF.
Chem. Rev.
1999,
99:
2589
<A NAME="RD33507ST-1L">1l</A>
Michelet V.
Toullec PY.
Genet J.-P.
Angew. Chem. Int. Ed.
2008,
47: in press
<A NAME="RD33507ST-2A">2a</A>
Zhang L.
Sun J.
Kozmin SA.
Adv. Synth. Catal.
2006,
348:
2271
<A NAME="RD33507ST-2B">2b</A>
Nieto-Oberhuber C.
López S.
Jiménez-Núñez E.
Echavarren AM.
Chem. Eur. J.
2006,
12:
5916
<A NAME="RD33507ST-2C">2c</A>
Nevado C.
Echavarren AM.
Synthesis
2005,
167
<A NAME="RD33507ST-2D">2d</A>
Arcadi A.
Di Giuseppe S.
Curr. Org. Chem.
2004,
8:
795
<A NAME="RD33507ST-2E">2e</A>
Bianchi G.
Arcadi A. In Targets in Heterocyclic Systems
Vol. 8:
Attanasi OA.
Spinelli D.
Springer;
Berlin:
2004.
p.82
<A NAME="RD33507ST-2F">2f</A>
Aubert C.
Fensterbank L.
Gandon V.
Malacria M.
Topics Organomet. Chem.
2006,
19:
259
For a review discussing natural products exhibiting the γ-butyrolactone substructure,
see:
<A NAME="RD33507ST-3A">3a</A>
Koch SSC.
Chamberlin AR.
In Studies in Natural Products Chemistry
Vol. 16:
.
Elsevier Science;
Amsterdam:
1995.
p.687
For reviews discussing the synthetic routes to γ-alkylydene-γ-butyrolactones, see:
<A NAME="RD33507ST-3B">3b</A>
Seitz M.
Reiser O.
Curr. Opin. Chem. Biol.
2005,
9:
285
<A NAME="RD33507ST-3C">3c</A>
Negishi E.-I.
Kotora M.
Tetrahedron
1997,
53:
6707
For representative examples from Pd chemistry, see:
<A NAME="RD33507ST-3D">3d</A>
Balme G.
Monteiro N.
Bouyssi D.
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.-I.
John Wiley and Sons;
New York:
2002.
p.2245-2265
<A NAME="RD33507ST-3E">3e</A>
Hosokawa T.
Murahashi S.-I.
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.-I.
John Wiley and Sons;
New York:
2002.
p.2169-2192
<A NAME="RD33507ST-3F">3f</A>
Xu C.
Negishi E.-I.
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.-I.
John Wiley and Sons;
New York:
2002.
p.2289
For specific cases of natural product synthesis where cyclizations of alkynoic acids
constitute a key step, see:
<A NAME="RD33507ST-4A">4a</A>
Algueró M.
Bosch J.
Castañer J.
Castellá J.
Castells J.
Mestres R.
Pascual J.
Serratosa F.
Tetrahedron
1962,
18:
1381
<A NAME="RD33507ST-4B">4b</A>
Jong TT.
Williard PG.
Porwoll JP.
J. Org. Chem.
1984,
49:
735
<A NAME="RD33507ST-4C">4c</A>
Imagawa H.
Fujikawa Y.
Tsuchihiro A.
Kinoshita A.
Yoshinaga T.
Takao H.
Nishizawa N.
Synlett
2006,
639
<A NAME="RD33507ST-5A">5a</A>
Wright AD.
de Nys R.
Angerhofer CK.
Pezzuto JM.
Gurrath M.
J. Nat. Prod.
2006,
69:
1180
<A NAME="RD33507ST-5B">5b</A>
Chen C.-H.
Lo W.-L.
Liu Y.-C.
Chen C.-Y.
J. Nat. Prod.
2006,
69:
927
For comprehensive reviews dealing with transition-metal-catalyzed heteroatom-hydrogen
additions to alkynes, see:
<A NAME="RD33507ST-6A">6a</A>
Alonso F.
Beletskaya IP.
Yus M.
Chem. Rev.
2004,
104:
3079
<A NAME="RD33507ST-6B">6b</A>
Beller M.
Seayad J.
Tillack A.
Jiao H.
Angew. Chem. Int. Ed.
2004,
43:
3368
<A NAME="RD33507ST-6C">6c</A>
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
<A NAME="RD33507ST-6D">6d</A> For Ru-catalyzed intermolecular reactions, see:
Bruneau C.
Dixneuf PH.
Acc. Chem. Res.
1999,
32:
311
Silver catalysis:
<A NAME="RD33507ST-7A">7a</A>
Castaner J.
Pascual J.
J. Chem. Soc.
1958,
3962
<A NAME="RD33507ST-7B">7b</A>
Pale P.
Chuche J.
Tetrahedron Lett.
1987,
27:
6447
<A NAME="RD33507ST-7C">7c</A>
Dalla V.
Pale P.
New. J. Chem.
1999,
23:
803
<A NAME="RD33507ST-7D">7d</A>
Dalla V.
Pale P.
Tetrahedron Lett.
1994,
35:
3525
<A NAME="RD33507ST-7E">7e</A>
Oh CH.
Yi HJ.
Lee JH.
New. J. Chem.
2007,
31:
835
Mercury catalysis:
<A NAME="RD33507ST-8A">8a</A>
Yamamoto M.
J. Chem. Soc., Chem. Commun.
1978,
649
<A NAME="RD33507ST-8B">8b</A>
Yamamoto M.
J. Chem. Soc., Perkin Trans. 1
1981,
582
<A NAME="RD33507ST-8C">8c</A>
Amos RA.
Katzenellenbogen JA.
J. Org. Chem.
1978,
43:
560
<A NAME="RD33507ST-8D">8d</A>
Amos RA.
Katzenellenbogen JA.
J. Am. Chem. Soc.
1981,
103:
5459
<A NAME="RD33507ST-8E">8e</A>
Rollinson SW.
Amos RA.
Katzenellenbogen JA.
J. Am. Chem. Soc.
1981,
103:
4114
<A NAME="RD33507ST-8F">8f</A>
Sofia MJ.
Katzenellenbogen JA.
J. Org. Chem.
1984,
50:
2331
<A NAME="RD33507ST-8G">8g</A>
Spencer RW.
Tam TF.
Thomas E.
Robinson VJ.
Krantz A.
J. Am. Chem. Soc.
1986,
108:
5589
Palladium catalysis:
<A NAME="RD33507ST-9A">9a</A>
Lambert C.
Utimoto K.
Nozaki H.
Tetrahedron Lett.
1984,
25:
5323
<A NAME="RD33507ST-9B">9b</A>
Yanagihara N.
Lambert C.
Iritari K.
Utimoto K.
Nozaki H.
J. Am. Chem. Soc.
1986,
108:
2753
<A NAME="RD33507ST-9C">9c</A>
Arcadi A.
Burini A.
Cacchi S.
Delmastro M.
Marinelli F.
Pietroni BR.
J. Org. Chem.
1992,
57:
976
<A NAME="RD33507ST-9D">9d</A>
Cavicchioli M.
Bouyssi D.
Goré J.
Balme G.
Tetrahedron Lett.
1996,
37:
1429
<A NAME="RD33507ST-9E">9e</A>
Wang X.
Lu X.
J. Org. Chem.
1996,
61:
2254
<A NAME="RD33507ST-9F">9f</A>
Huo Z.
Patil NT.
Jin T.
Pahadi NK.
Yamamoto Y.
Adv. Synth. Catal.
2007,
349:
680
<A NAME="RD33507ST-9G">9g</A>
Bellina F.
Ciucci D.
Vergamini P.
Rossi R.
Tetrahedron
2000,
56:
2533
<A NAME="RD33507ST-9H">9h</A>
Ahmed Z.
Albrecht U.
Langer P.
Eur. J. Org. Chem.
2005,
3469
<A NAME="RD33507ST-9I">9i</A>
Subramanian V.
Batchu VR.
Barange D.
Pal M.
J. Org. Chem.
2005,
70:
4778
<A NAME="RD33507ST-9J">9j</A>
Duchêne A.
Thibonnet J.
Parrain J.-L.
Anselmi E.
Abarbri M.
Synthesis
2007,
597
<A NAME="RD33507ST-10">10</A> Ruthenium catalysis:
Jimenez-Tenotio M.
Puerta MC.
Valerga P.
Moreno-Dorado FJ.
Guerra FM.
Massanet GM.
Chem. Commun.
2001,
2324
Rhodium catalysis:
<A NAME="RD33507ST-11A">11a</A>
Marder TB.
Chan DMT.
Fultz WC.
Calabrese JC.
Milstein D.
J. Chem. Soc., Chem Commun.
1987,
1885
<A NAME="RD33507ST-11B">11b</A>
Chan DMT.
Marder TB.
Milstein D.
Taylor NJ.
J. Am. Chem. Soc.
1987,
109:
6385
<A NAME="RD33507ST-11C">11c</A>
Elgafi S.
Field LD.
Messerle BA.
J. Organomet. Chem.
2000,
607:
97
Cluster catalysis:
<A NAME="RD33507ST-12A">12a</A>
Wakabayashi T.
Ishii Y.
Ishikawa K.
Hidai M.
Angew. Chem., Int. Ed. Engl.
1996,
35:
3123 ; and references cited therein
<A NAME="RD33507ST-12B">12b</A>
Takei I.
Wakebe Y.
Suzuki K.
Enta Y.
Suzuki T.
Mizobe Y.
Hidai M.
Organometallics
2003,
22:
4639
<A NAME="RD33507ST-13A">13a</A>
Charruault L.
Michelet V.
Taras R.
Gladiali S.
Genêt J.-P.
Chem. Commun.
2004,
850
<A NAME="RD33507ST-13B">13b</A>
Nevado C.
Charruault L.
Michelet V.
Nieto-Oberhuber C.
Muñoz MP.
Méndez M.
Rager M.-N.
Genêt J.-P.
Echavarren AM.
Eur. J. Org. Chem.
2003,
706
<A NAME="RD33507ST-13C">13c</A>
Antoniotti S.
Genin E.
Michelet V.
Genêt J.-P.
J. Am. Chem. Soc.
2005,
127:
9976
<A NAME="RD33507ST-13D">13d</A>
Genin E.
Antoniotti S.
Michelet V.
Genêt J.-P.
Angew. Chem. Int. Ed.
2005,
44:
4949
<A NAME="RD33507ST-13E">13e</A>
Toullec PY.
Genin E.
Leseurre L.
Genêt J.-P.
Michelet V.
Angew. Chem. Int. Ed.
2006,
45:
7427
<A NAME="RD33507ST-13F">13f</A>
Genin E.
Leseurre L.
Toullec PY.
Genêt J.-P.
Michelet V.
Synlett
2007,
1780
<A NAME="RD33507ST-13G">13g</A>
Leseurre L.
Toullec PY.
Genêt J.-P.
Michelet V.
Org. Lett.
2007,
9:
4049
<A NAME="RD33507ST-14A">14a</A>
Genin E.
Toullec PY.
Antoniotti S.
Brancour C.
Genêt J.-P.
Michelet V.
J. Am. Chem. Soc.
2006,
128:
3112
<A NAME="RD33507ST-14B">14b</A>
Genin E.
Toullec PY.
Antoniotti S.
Brancour C.
G enêt J.-P.
Michelet V.
ARKIVOC
2007,
(v):
67
For references dealing with the gold-catalyzed hydration of alkynes, see:
<A NAME="RD33507ST-15A">15a</A>
Fukuda Y.
Utimoto K.
J. Org. Chem.
1991,
56:
3729
<A NAME="RD33507ST-15B">15b</A>
Teles JH.
Brode S.
Chabanas M.
Angew. Chem. Int. Ed.
1998,
37:
1415
<A NAME="RD33507ST-15C">15c</A>
Mizushima E.
Sato K.
Hayashi TM.
Angew. Chem. Int. Ed.
2002,
41:
4563
<A NAME="RD33507ST-15D">15d</A>
Schneider SK.
Herrmann WA.
Herdtweck E.
Z. Anorg. Allg. Chem.
2003,
629:
2363
<A NAME="RD33507ST-16A">16a</A>
Harkat H.
Weibel J.-M.
Pale P.
Tetrahedron Lett.
2006,
47:
6273
<A NAME="RD33507ST-16B">16b</A> For a recent Au-catalyzed cyclization of γ- and δ-acetylenic acids, see:
Marchal E.
Uriac P.
Legoin B.
Toupet L.
van de Weghe P.
Tetrahedron
2007,
63:
9979
<A NAME="RD33507ST-17A">17a</A>
Jones CJ.
Taube D.
Ziatdinov VR.
Periana RA.
Nielsen RJ.
Oxgaard J.
Goddard WA.
Angew. Chem. Int. Ed.
2004,
43:
4626
<A NAME="RD33507ST-17B">17b</A>
De Vos DE.
Sels BF.
Angew. Chem. Int. Ed.
2005,
44:
30
<A NAME="RD33507ST-18">18</A>
General Procedure for the Cycloisomerization of γ-Acetylenic Acid 1
Substrate 1b (98 mg, 1 mmol) was placed in 5 mL Schlenk tube under argon and 1 mL of degassed
MeCN was added. Gold(III) oxide (11.1 mg, 0,025 mmol) was added and the reaction mixture
stirred at r.t. for 2 h. Filtration of the reaction mixture on a pad of 2 cm of silica
using 15 mL of EtOAc and evaporation of the solvents allowed the isolation of product
2b as colorless oil in an analytically pure form (89 mg, 90% yield).
<A NAME="RD33507ST-19">19</A>
2-(Methoxycarbonyl)-2-(prop-2-ynyl)hex-5-ynoic Acid (1i)
Substrate 1i was prepared in a two-step procedure using malonic synthesis. Sodium hydride (1.1
equiv, 60 wt.% in mineral oil) was added portionwise at 0 °C to a solution of dimethyl
propargylmalonate (1 equiv) in anhydrous DMF. The reaction was allowed to warm up
to r.t. and but-3-ynyl trifluoromethylsulfonate ester (1.1 equiv) slowly added. The
mixture was stirred at r.t. overnight, quenched upon addition of 10 mL of H2O and extracted with Et2O (3 × 20 mL). The combined organic layers were washed with brine (30 mL), dried over
MgSO4, and solvents evaporated under reduced pressure. Dimethyl 2-(but-3-ynyl)-2-(prop-2-ynyl)malonate
was obtained as a colorless oil (18%) after purification by silica gel chromatography
(cyclohexane-EtOAc, 90:10). Monosaponification was conducted following a reported
procedure.14 A solution of KOH (1.2 equiv) in anhydrous MeOH (0.4 mol/L) was added to a cooled
(0 °C) solution of substrate (1 equiv) in anhydrous MeOH (0.4 mol/L). The mixture
was stirred at r.t. for 6 h. Solvent was removed under reduced pressure and the crude
product redissolved in Et2O. The organic layer was treated three times with sat. NaHCO3, the aqueous phases collected, acidified to pH 1 with concd HCl, and then extracted
with Et2O. This organic layer was then dried over MgSO4 and the solvents removed under reduced pressure to give 1i as a colorless oil (48% yield).
2-Methoxycarbonyl-2-[but-3′-ynyl]-4-methylene-butyrolactone (2i)
1H NMR (300 MHz, CDCl3): δ = 4.80-4.83 (m, 1 H), 4.39-4.41 (m, 1 H), 3.79 (s, 3 H), 3.39 (dt, J = 18.9, 2.0 Hz, 1 H), 2.98 (dt, J = 18.9, 2.0 Hz, 1 H), 2.05-2.40 (m, 4 H), 1.99 (t, J = 2.6 Hz, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 171.9, 168.9, 152.3, 89.9, 82.1, 69.8, 54.6, 53.4, 35.3, 32.6, 14.3. MS (CI,
NH3): m/z (%) = 209 (8) [M + H]+, 226 (100) [M + NH4]+, 244 (8) [M + NH3 + NH4]+. HRMS (CI-NH3): m/z calcd for C11H13O4: 209.0814; found: 209.0819.
<A NAME="RD33507ST-20">20</A>
2,2-Dimethylhept-4-ynoic Acid (1l)
Methyl isobutyrate (1.07g, 10.5 mmol) was added dropwise at -78 °C to a solution of
LDA solution in THF (15 mL, 0.7 mol/L, 10.5 mmol). The solution was stirred at -78
°C for 20 min then 1-bromobut-2-yne (1.47g, 10 mmol) slowly added dropwise. The reaction
was stirred at -78 °C for 2 h then allowed to warm up to r.t. The reaction mixture
was quenched with sat. aq NaHCO3 solution and extracted with Et2O. The combined organic layers were collected, washed with brine, dried over MgSO4, and the solvents removed under reduced pressure. The crude oil was purified by flash
chromatography [PE (30-60)-EtOAc, 95:5] to give methyl 2,2-dimethylhept-4-ynoate as
a colorless oil (1.48 g, 88% yield). Saponification was conducted following a published
procedure.2 Methyl 2,2-dimethylhept-4-ynoate (1.01g, 6 mmol) was added to a solution of KOH (403
mg, 7.2 mmol) in MeOH and the reaction mixture was stirred at r.t. for 16 h. Solvent
was removed under reduced pressure and the crude product dissolved in Et2O. The organic layer was treated three times with sat. Na2CO3, the aqueous phases collected, acidified to pH 1 with concd HCl, and then extracted
with Et2O. This organic layer was then dried over MgSO4 and the solvents removed under reduced pressure to give 1l as a colorless oil (590 mg, 64% yield). 1H NMR (300 MHz, CDCl3): δ = 2.41 (t, J = 2.4 Hz, 2 H), 2.16 (qt, J = 7.5, 2.4 Hz, 2 H), 1.28 (s, 3 H), 1.11 (t, J = 7.5 Hz, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 183.2, 84.3, 75.5, 42.2, 29.7, 24.3, 14.2, 12.4. MS (CI, NH3): m/z (%) = 155 (15) [M + H]+) 172 (100) [M + NH4]+. HRMS (CI-NH3): m/z calcd for C9H15O2: 155.1072; found: 155.1075.
2,2-Dimethyl-4-propylydenebutyrolactone (2l)
1H NMR (300 MHz, CDCl3): δ = 4.60 (tt, J = 7.4, 1.7 Hz, 1 H), 2.61 (dt, J = 1.5, 1.5 Hz, 2 H), 2.16 (dtq, J = 7.5, 7.4, 1.4 Hz, 2 H), 1.29 (s, 6 H), 0.98 (t, J = 7.5 Hz, 3 H). 13C NMR (75.4 MHz, CDCl3): δ = 180.4, 144.8, 107.2, 40.8, 40.0, 24.6, 18.5, 14.2. MS (CI, NH3): m/z (%) 172 (20) [M + NH4]+, 188 (100) [M + NH4 + H2O]+. HRMS (CI-NH3): m/z calcd for C9H15O2: 155.1072; found: 155.1071.