Subscribe to RSS
DOI: 10.1055/s-2008-1027826
© Georg Thieme Verlag KG Stuttgart · New York
Erythropoietin – aktueller Stand der Wissenschaft
Erythropoietin – State of SciencePublication History
Publication Date:
15 December 2008 (online)

Zusammenfassung
Im Jahr 1984 gelang erstmals die Rekombination von Erythropoietin (rhEPO) in E.coli. Im folgenden Jahr erfolgte erstmalig die Synthese von rhEPO in Ovarialzellen von Hamstern, welches für die medizinische Applikation besser geeignet ist. Im Jahr 1989 wurde die FDA-Zulassung erteilt. Seitdem wird rhEPO vorwiegend bei der Behandlung von Anämien im Rahmen von chronischen Niereninsuffizienzen und malignen Prozessen eingesetzt. In den letzten 15 Jahren sind in der Forschung zahlreiche Ansätze verfolgt worden, die Bioaktivität von rhEPO und seinen Analoga zu verbessern. Inzwischen gibt es künstlich hergestelltes EPO, in humanen Zelllinien rekombiniertes EPO und Substanzen, die andere Angriffsorte der Erythropoese besitzen. Man spricht in diesem Zusammenhang von „Erythropoese stimulierenden Agenzien” (ESA). Dadurch wird deutlich, dass der Missbrauch von EPO bzw. ESA zu Dopingzwecken, trotz sensitiver Nachweisverfahren für rhEPO, weiterhin möglich ist. Gleichzeitig wurden im Rahmen dieser Forschungen zahlreiche verschiedene Zelltypen verifiziert, die sowohl EPO-Rezeptoren besitzen als auch Syntheseort sind. So konnte unter anderem eine Syntheseleistung in den Tuben, im Herzen und im Gehirn nachgewiesen werden. EPO ist auf diesen nicht blutbildenden Geweben assoziiert mit Funktionen der Transmitter-Freisetzung, Angiogenese, Chemotaxis und Apoptosehemmung. Diese Erkenntnisse haben der Thematik EPO eine große Diversivität hinsichtlich potenzieller, zytoprotektiver Eigenschaften bei Schlaganfall und Myokardinfarkt in Prävention und Rehabilitation gegeben. In den letzten Jahren konnte so ein wachsendes Interesse an der Thematik verzeichnet werden.
Abstract
After a century of research and medical use, erythropoietin (EPO) has more therapeutic approaches than ever in history. After cloning its gene in 1984, EPO obtained FDA license for clinical use in 1989. EPO and its analogues are mainly used for treatment of the anaemias of chronic renal failure and malignancies. Regarding research of the past 15 years, tremendous efforts were made for improvement of bioactivity, half-life and alternative application. Today, there are human cell-lined derived EPO, SEP, CEPO, CERA and drugs which are linked to different pathways of signaling. Due to the fact that these substances are not detectable with standardized methods of detection, it must be assumed that the abuse in sport is still possible. Moreover it was found out that the EPO receptor and EPO synthesis are also expressed by non-hematopoietic tissues, e. g. heart myocytes, ovarian and glial cells. On these tissues EPO is linked to promote cell proliferation and differentiation, angiogenesis or inhibition of apoptosis. This detection offered approaches in treatment for apoplexia and cardiac infarction and even in preventive treatment of cardiovascular diseases which led to an interest of manifold subject categories.
Schlüsselwörter
Erythropoietin - geschichtlicher Überblick - neue therapeutische Aspekte - Doping - Nebenwirkungen
Key words
erythropoietin - historic overview - new therapeutic approaches - doping - side-effects
Literatur
- 1
Jelkmann W.
Erythropoietin after a century of research: younger than ever.
Eur J Haematol.
2007;
78
183-205
MissingFormLabel
- 2
Eckardt K U, Kurtz A.
Regulation of erythropoietin production.
Eur J Clin Invest.
2005;
35 (Suppl 3)
13-19
MissingFormLabel
- 3
Bonsdorff E, Jalavista E.
A humoral mechanism in anoxic erythrocytosis.
Acta Physiol Scand.
1948;
16
150-170
MissingFormLabel
- 4
Erslev A.
Humoral regulation of red cell production.
Blood.
1953;
8
349-357
MissingFormLabel
- 5
Lee-Huang S.
Cloning and expression of human erythropoietin cDNA in Escherichia coli.
Proc Natl Acad Sci U S A.
1984;
81
2708-2712
MissingFormLabel
- 6
Levin N.
Management of blood pressure changes during recombinant human erythropoietin therapy.
Semin Nephrol.
1989;
9
16-20
MissingFormLabel
- 7
Kawasaki N, Morimoto K, Hayakawa T.
Study on evaluating methods for the quality control of glycoprotein products. (1).
Erythropoietin products.
Eisei Shikenjo Hokoku.
1995;
69-73
MissingFormLabel
- 8
Stockmann C, Fandrey J.
Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression.
Clin Exp Pharmacol Physiol.
2006;
33
968-979
MissingFormLabel
- 9
Marxsen J H, Stengel P, Doege K. et al .
Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases.
Biochem J.
2004;
381
761-767
MissingFormLabel
- 10
Sasaki R, Masuda S, Nagao M.
Pleiotropic functions and tissue-specific expression of erythropoietin.
News Physiol Sci.
2001;
16
110-113
MissingFormLabel
- 11
Yoshimura A, Arai K.
Physician Education: The Erythropoietin Receptor and Signal Transduction.
Oncologist.
1996;
1
337-339
MissingFormLabel
- 12
Semenza G L.
Hypoxia-inducible factor 1 (HIF-1) pathway.
Sci STKE.
2007;
2007
cm8
MissingFormLabel
- 13
Watkins P C, Eddy R, Hoffman N. et al .
Regional assignment of the erythropoietin gene to human chromosome region 7pter----q22.
Cytogenet Cell Genet.
1986;
42
214-218
MissingFormLabel
- 14
Choi D, Kim M, Park J.
Erythropoietin: physico- and biochemical analysis.
J Chromatogr B Biomed Appl.
1996;
687
189-199
MissingFormLabel
- 15
Narhi L O, Arakawa T, Aoki K H. et al .
The effect of carbohydrate on the structure and stability of erythropoietin.
J Biol Chem.
1991;
266
23 022-23 026
MissingFormLabel
- 16
Dame C, Fahnenstich H, Freitag P. et al .
Erythropoietin mRNA expression in human fetal and neonatal tissue.
Blood.
1998;
92
3218-3225
MissingFormLabel
- 17
Fisher J W.
Erythropoietin: physiology and pharmacology update.
Exp Biol Med.
2003;
228
1-14
MissingFormLabel
- 18
Jelkmann W.
Control of erythropoietin gene expression and its use in medicine.
Methods Enzymol.
2007;
435
179-197
MissingFormLabel
- 19
Lappin T R, Maxwell A P, Johnston P G.
EPO’s alter ego: erythropoietin has multiple actions.
Stem Cells.
2002;
20
485-492
MissingFormLabel
- 20
Bath P M, Sprigg N.
Colony stimulating factors (including erythropoietin, granulocyte colony stimulating
factor and analogues) for stroke.
Cochrane Database Syst Rev.
2007;
CD005207
MissingFormLabel
- 21
Sasaki H, Bothner B, Dell A. et al .
Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells
by a human erythropoietin cDNA.
J Biol Chem.
1987;
262
12 059-12 076
MissingFormLabel
- 22
Wasley L C, Timony G, Murtha P. et al .
The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro
and in vivo biologic activities of erythropoietin.
Blood.
1991;
77
2624-2632
MissingFormLabel
- 23
Yoshimura A, Zimmers T, Neumann D. et al .
Mutations in the Trp-Ser-X-Trp-Ser motif of the erythropoietin receptor abolish processing,
ligand binding, and activation of the receptor.
J Biol Chem.
1992;
267
11 619-11 625
MissingFormLabel
- 24
Akimoto T, Kusano E, Inaba T. et al .
Erythropoietin regulates vascular smooth muscle cell apoptosis by a phosphatidylinositol
3 kinase-dependent pathway.
Kidney Int.
2000;
58
269-282
MissingFormLabel
- 25
Lacombe C, Mayeux P.
The molecular biology of erythropoietin.
Nephrol Dial Transplant.
1999;
14 (Suppl 2)
22-28
MissingFormLabel
- 26
Strippoli G F, Navaneethan S D, Craig J C.
Haemoglobin and haematocrit targets for the anaemia of chronic kidney disease.
Cochrane Database Syst Rev.
2006;
CD003967
MissingFormLabel
- 27
Lucas C, Carrera F, Jorge C. et al .
Effectiveness of weekly darbepoetin alfa in the treatment of anaemia of HIV-infected
haemodialysis patients.
Nephrol Dial Transplant.
2006;
21
3202-3206
MissingFormLabel
- 28
Bokemeyer C, Aapro M S, Courdi A. et al .
EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer:
2006 update.
Eur J Cancer.
2007;
43
258-270
MissingFormLabel
- 29
Miskowiak K, O’Sullivan U, Harmer C J.
Erythropoietin enhances hippocampal response during memory retrieval in humans.
J Neurosci.
2007;
27
2788-2792
MissingFormLabel
- 30
Ehrenreich H, Fischer B, Norra C. et al .
Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis.
Brain.
2007;
130
2577-2588
MissingFormLabel
- 31
Grunfeld J F, Barhum Y, Blondheim N. et al .
Erythropoietin delays disease onset in an amyotrophic lateral sclerosis model.
Exp Neurol.
2007;
204
260-263
MissingFormLabel
- 32
Bogoyevitch M A.
An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin
and the lessons learnt from studies in neuroprotection.
Cardiovasc Res.
2004;
63
208-216
MissingFormLabel
- 33
Egrie J C, Dwyer E, Browne J K. et al .
Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than
recombinant human erythropoietin.
Exp Hematol.
2003;
31
290-299
MissingFormLabel
- 34
Long D L, Doherty D H, Eisenberg S P. et al .
Design of homogeneous, monopegylated erythropoietin analogs with preserved in vitro
bioactivity.
Exp Hematol.
2006;
34
697-704
MissingFormLabel
- 35
Dumont J A, Low S C, Peters R T. et al .
Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein
therapeutics.
BioDrugs.
2006;
20
151-160
MissingFormLabel
- 36
Fiordaliso F, Chimenti S, Staszewsky L. et al .
A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion
injury.
Proc Natl Acad Sci U S A.
2005;
102
2046-2051
MissingFormLabel
- 37
Martin K J.
The first human cell line-derived erythropoietin, epoetin-delta (Dynepo), in the management
of anemia in patients with chronic kidney disease.
Clin Nephrol.
2007;
68
26-31
MissingFormLabel
- 38
Pascual J A, Belalcazar V, Bolos de C. et al .
Recombinant erythropoietin and analogues: a challenge for doping control.
Ther Drug Monit.
2004;
26
175-179
MissingFormLabel
- 39
Liu Z, Stoll V S, Devries P J. et al .
A potent erythropoietin-mimicking human antibody interacts through a novel binding
site.
Blood.
2007;
110
2408-2413
MissingFormLabel
- 40
Hsieh M M, Linde N S, Wynter A. et al .
HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction,
erythrocytosis, and modest fetal hemoglobin expression in rhesus macaques.
Blood.
2007;
110
2140-2147
MissingFormLabel
- 41
Battaglia A, Fattorossi A, Pierelli L. et al .
The fusion protein MEN 11 303 (granulocyte-macrophage colony stimulating factor/erythropoietin)
acts as a potent inducer of erythropoiesis.
Exp Hematol.
2000;
28
490-498
MissingFormLabel
- 42
Lee D E, Son W, Ha B J. et al .
The prolonged half-lives of new erythropoietin derivatives via peptide addition.
Biochem Biophys Res Commun.
2006;
339
380-385
MissingFormLabel
- 43
Tsutsui H, Sugioka Y, Takaku F. et al .
A double-blind dose ranging study of weekly subcutaneous administration of rHuEPO
(KRN5702) on post-phlebotomy anemia of patients scheduled for predeposit autologous
blood transfusion (multicenter late PhII study).
Nippon Seikeigeka Gakkai Zasshi.
1993;
67
919-934
MissingFormLabel
- 44
Luft F C.
Erythropoietin and arterial hypertension.
Clin Nephrol.
2000;
53
S61-S64
MissingFormLabel
- 45
Sytkowski A J.
Does erythropoietin have a dark side? Epo signaling and cancer cells.
Sci STKE.
2007;
2007
pe38
MissingFormLabel
- 46
Casadevall N.
What is antibody-mediated pure red cell aplasia (PRCA)?.
Nephrol Dial Transplant.
2005;
20 Suppl 4
iv3-iv8
MissingFormLabel
- 47
Parisotto R, Gore C J, Emslie K R. et al .
A novel method utilising markers of altered erythropoiesis for the detection of recombinant
human erythropoietin abuse in athletes.
Haematologica.
2000;
85
564-572
MissingFormLabel
- 48
Gaudard A, Varlet-Marie E, Bressolle F. et al .
Drugs for increasing oxygen and their potential use in doping: a review.
Sports Med.
2003;
33
187-212
MissingFormLabel
- 49
Minuto F, Barreca A, Melioli G.
Indirect evidence of hormone abuse. Proof of doping?.
J Endocrinol Invest.
2003;
26
919-923
MissingFormLabel
- 50
Schmidt W, Prommer N.
The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass
routinely.
European journal of applied physiology.
2005;
95
486-495
MissingFormLabel
N. Schöffel
Institut für Arbeitsmedizin, Charité – Universitätsmedizin Berlin, Freie Universität
Berlin und Humboldt-Universität zu Berlin
Thielallee 73
14195 Berlin-Dahlem
Email: norman.schoeffel@charite.de