Zusammenfassung
Eine Abwägung der Risiken einer nuklearmedizinischen Therapie setzt die patientenspezifische
Kenntnis der Energiedosis in den kritischen Organen voraus, da der biologische Effekt
unter anderem durch die absorbierte Dosis bestimmt wird. Zusätzlich müssen die möglicherweise
inhomogene räumliche Verteilung der Nuklide, die zeitabhängigen Dosisraten und die
Energien und Emissionswahrscheinlichkeiten der emittierten Teilchen berücksichtigt
werden. Ebenso müssen bei der Therapieplanung auch strahlenbiologische Aspekte beachtet
werden. Nur dann kann eine verlässliche Dosis-Wirkungsbeziehung aufgestellt werden,
die entscheidend für die weitere Entwicklung der Radionuklidtherapie ist. Ursprünglich
wurden die absorbierten Strahlendosen für die verschiedenen Gewebe auf der Basis der
applizierten Aktivität, der Biokinetik und einfacher Modelle des Menschen berechnet.
Die nuklearmedizinische Bildgebung bietet jedoch die Möglichkeit die Biokinetik der
verwendeten radioaktiv markierten Substanzen für viele Organe im einzelnen Patienten
zu bestimmen. Deshalb wurden inzwischen patientenspezifische Verfahren entwickelt
die absorbierte Dosis in den für die eingesetzten Substanzen kritischen Organen zu
bestimmen. In der vorliegenden Arbeit werden verschiedene Methoden zur Schätzung und
Bewertung der absorbierten Dosis sowie radiobiologische Konzepte wie z. B. die Verwendung
der Biologisch effektiven Dosis (BED) zur Therapieplanung vorgestellt und diskutiert.
Abstract
A prerequisite for the risk assessment in targeted radiotherapy is the knowledge of
the patient-specific absorbed dose in critical organs as the biological effect is
determined by the absorbed dose. In addition, one needs to take potential inhomogeneous
spatial activity distributions, time-dependent dose rates and the energies and emission
probabilities of the emitted particles into account. Radiation biology effects should
not be neglected for therapy planning. Combining all these factors leads to a reliable
dose-effect relationship which is mandatory for the further development of targeted
radiotherapy. In the past the absorbed dose was calculated based upon the administered
activity, the biokinetics and upon simplified human models. Today, nuclear medicine
imaging provides the opportunity to determine, for many organs, the biokinetics of
radioactive labelled pharmaceuticals patient-specifically. Recently, many patient-specific
methods have been developed for determining the absorbed dose to critical organs.
In the present work several methods for the assessment and the critical appraisal
of the absorbed dose as well as radio-biological concepts such as the biological effective
dose (BED) for therapy planning will be introduced and discussed.
Schlüsselwörter
Dosimetrie - MIRD - Daten-Akquisition - biologisch effektive Dosis
Key words
dosimetry - MIRD - data acquisition - biologically effective dose (BED)
Literatur
- 1 Strahlenschutzverordnung (StrlSchV) vom 20. Juli 2001. In: 2001. p. BGBl. I Nr.
38 vom 26.07.2001, S. 1714; ber. 2002 S. 1459; 2018.2006.2002 S. 1869; 2012.2008.2005
S. 2365; 2001.2009.2005 S. 2618
- 2
Adelstein S J, Green A J, Howell R W et al.
Absorbed-dose specification in nuclear medicine.
Journal of the ICRU.
2002;
2
1-110
- 3
Bolch W E, Bouchet L G, Robertson J S et al.
MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions - radionuclide
S values at the voxel level. Medical Internal Radiation Dose Committee.
J Nucl Med.
1999;
40
11S-36S
- 4
Chiavassa S, Bardies M, Guiraud-Vitaux F et al.
OEDIPE: a personalized dosimetric tool associating voxel-based models with MCNPX.
Cancer Biother Radiopharm.
2005;
20
325-332
- 5
Dale R, Carabe-Fernandez A.
The Radiobiology of Conventional Radiotherapy and Its Application to Radionuclide
Therapy.
Cancer Biother Radiopharm.
2005;
20
47-51
- 6
Dale R G.
The application of the linear-quadratic dose-effect equation to fractionated and protracted
radiotherapy.
Br J Radiol.
1985;
58
515-528
- 7
Dewaraja Y K, Wilderman S J, Ljungberg M, Koral K F, Zasadny K, Kaminiski M S.
Accurate Dosimetry in 131I Radionuclide Therapy Using Patient-Specific, 3-Dimensional Methods for SPECT Reconstruction
and Absorbed Dose Calculation.
J Nucl Med.
2005;
46
840-849
- 8
Erdi A K, Erdi Y E, Yorke E D, Wessels B W.
Treatment planning for radio-immunotherapy.
Phys Med Biol.
1996;
41
2009-2026
- 9
Erwin W D, Groch M W, Macey D J, DeNardo G L, DeNardo S J, Shen S.
A radioimmunoimaging and MIRD dosimetry treatment planning program for radioimmunotherapy.
Nucl Med Biol.
1996;
23
525-532
- 10
Flux G, Bardies M, Monsieurs M, Savolainen S, Strand S E, Lassmann M.
The Impact of PET and SPECT on Dosimetry for Targeted Radionuclide Therapy.
Z Med Phys.
2006;
16
47-59
- 11
Geworski L, Knoop B-O, Hofmann M et al.
Überprüfung der Kreuzkalibrierung von Positronen-Emissions-Tomographen zu ihren peripheren
Geräten.
Z Med Phys.
2003;
13
109-114
- 12
Glatting G, Kletting P, Reske S N, Kathrin H, Ring C.
Choosing the optimal fit function: Comparison of the Akaike Information Criterion
and the F-test.
Med Phys.
2007;
34
4285-4292
- 13
Glatting G, Landmann M, Kull T et al.
UlmDos - a software tool for voxelbased dosimetry before radionuclide therapy.
Biomed Tech.
2005;
50
94-95
- 14
Glatting G, Landmann M, Kull T et al.
Internal radionuclide therapy: The UlmDos software for treatment planning.
Med Phys.
2005;
32
2399-2405
- 15
Glatting G, Landmann M, Wunderlich A, Kull T, Mottaghy F M, Reske S N.
Internal radionuclide therapy: Software for treatment planning using tomographic data.
Nuklearmedizin.
2006;
45
269-272
- 16 Glatting G, Lassmann M. Nuklearmedizinische Dosimetrie. In: Krause B-J, Schwaiger
M, Buck AK (eds). Nuklearmedizinische Onkologie. 1. ed. Hüthig Jehle Rehm, Landsberg
2007
- 17
He B, Frey E C.
Comparison of conventional, model-based quantitative planar, and quantitative SPECT
image processing methods for organ activity estimation using In-111 agents.
Phys Med Biol.
2006;
51
3967-3981
- 18
Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim S M, Feinendegen L E.
Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation
dose calculation of analogous yttrium-90 radiotherapeutics.
J Nucl Med.
1993;
34
2222-2226
- 19
Knoop B O, Geworski L, Hofmann M, Munz D L, Knapp W H.
Use of recovery coefficients as a test of system linearity of response in positron
emission tomography (PET).
Phys Med Biol.
2002;
47
1237-1254
- 20
Kull T, Ruckgaber J, Weller R, Reske S N, Glatting G.
Quantitative Imaging of Yttrium-86 PET with the ECAT EXACT HR+ in 2D Mode.
Cancer Biother Radiopharm.
2004;
19
482-490
- 21
Larsson E, Jonsson B A, Jonsson L, Ljungberg M, Strand S E.
Dosimetry calculations on a tissue level by using the MCNP4c2 Monte Carlo code.
Cancer Biother Radiopharm.
2005;
20
85-91
- 22
Lehmann J, Hartmann Siantar C, Wessol D E et al.
Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA
system.
Phys Med Biol.
2005;
50
947-958
- 23 Loevinger R, Budinger T F, Watson E E. MIRD Primer for absorbed dose calculations. The
Society of Nuclear Medicine, New York 1989
- 24
Lubberink M, Lundqvist H, Westlin J E et al.
Positron emission tomography and radioimmunotargeting - aspects of quantification
and dosimetry.
Acta Oncol.
1999;
38
343-349
- 25
Mix M, Eschner W.
Image Reconstruction and Quantification in Emission Tomography.
Z Med Phys.
2006;
16
19-30
- 26
Niemierko A.
Reporting and analyzing dose distributions: a concept of equivalent uniform dose.
Med Phys.
1997;
24
103-110
- 27
O'Donoghue J A.
Implications of nonuniform tumor doses for radioimmunotherapy.
J Nucl Med.
1999;
40
1337-1341
- 28
Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S.
A practical method for positron-dependent compton-scatter correction in single photon
emission CT.
IEEE Transactions on Medical Imaging.
1991;
10
408-412
- 29
Petoussi-Henss N, Zankl M, Nosske D.
Estimation of patient dose from radio-pharmaceuticals using voxel models.
Cancer Biother Radiopharm.
2005;
20
103-109
- 30
Prideaux A R, Song H, Hobbs R F et al.
Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to
Patient-Specific 3-Dimensional Imaging-Based Internal Dosimetry.
J Nucl Med.
2007;
48
1008-1016
- 31
Sgouros G, Kolbert K S, Sheikh A et al.
Patient-Specific Dosimetry for 131I Thyroid Cancer Therapy Using 124I PET and 3-Dimensional-Internal Dosimetry (3D-ID) Software.
J Nucl Med.
2004;
45
1366-1372
- 32
Siegel J A, Thomas S R, Stubbs J B et al.
MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution
data acquisition and analysis for use in human radiation dose estimates.
J Nucl Med.
1999;
40
37S-61S
- 33
Stabin M.
Nuclear medicine dosimetry.
Phys Med Biol.
2006;
51
R187-R202
- 34
Stabin M G, Sparks R B, Crowe E.
OLINDA / EXM: The second-generation personal computer software for internal dose assessment
in nuclear medicine.
J Nucl Med.
2005;
46
1023-1027
- 35
Strand S E, Zanzonico P, Johnson T K.
Pharmacokinetic modeling.
Med Phys.
1993;
20
515-527
- 36
Vandenberghe S.
Three-dimensional positron emission tomography imaging with 124I and 86Y.
Nucl Med Commun.
2006;
27
237-245
- 37
Walrand S, Jamar F, Mathieu I et al.
Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86.
Eur J Nucl Med.
2003;
30
354-361
- 38 Weber D A, Eckerman K, Dilman T, Ryman J. Mird: Radionuclide Data and Decay Schemes. Society
of Nuclear Medicine 1989
- 39
Wolf I, Zankl M, Scheidhauer K et al.
Determination of individual S-values for 131I using segmented CT data and the EGS4 Monte Carlo code.
Cancer Biother Radiopharm.
2005;
20
98-102
- 40
Zaidi H.
Recent developments and future trends in nuclear medicine instrumentation.
Z Med Phys.
2006;
16
5-17
M. Lassmann
Klinik und Poliklinik für Nuklearmedizin · Universität Würzburg
Josef-Schneider-Str. 2
97080 Würzburg
Phone: +49 / 9 31 / 20 13 58 78
Fax: +49 / 9 31 / 20 16 18 03
Email: lassmann@nuklearmedizin.uni-wuerzburg.de