Pharmacopsychiatry 2007; 40: S40-S44
DOI: 10.1055/s-2007-992811
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Systems Neurobiology of the Dysfunctional Brain: Schizophrenia

J. Gallinat 1 , K. Obermayer 2 , A. Heinz 1
  • 1Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Campus Mitte, Germany
  • 2Berlin University of Technology, Berlin, Germany
Further Information

Publication History

Publication Date:
17 December 2007 (online)

Abstract

Systems biology tries to reconstruct living systems beyond bioinformatics or statistical approaches where known databases are analysed. An advantage is the dynamic variation in the model for instance by the addition of the factor time, which enables the researcher to simulate complex processes related to psychiatric diseases (systems neurobiology). Dynamic models of a patients' individual pathophysiology may be constructed employing multimodal brain imaging data of current neurotransmission and brain activation. From the clinical point of view, individual models of pathophysiology are preconditions for a personalised pharmacotherapy and may be suitable to predict adverse events, course of the disease and outcome. This review discusses the potential role of systems neurobiology in schizophrenia and focuses on evidence for a dysfunction of the dopamine and glutamate system.

References

  • 1 Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Heertum R Van, Gorman JM, Laruelle M. Prefrontal dopamine D1 receptors and working memory in schizophrenia.  J Neurosci. 2002;  , May 1; 22 ((9)) 3708-3719
  • 2 Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Heertum RL Van, Gorman JM, Laruelle M. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.  Proc Natl Acad Sci USA. 2000;  , Jul 5; 97 ((14)) 8104-8109
  • 3 Alberghina LR, Rossi R, Porro D, Vanoni M. In: Alberghino L, Westerhoff HV eds., Systems Biology, Definitions and Perspectives. Springer Verlag
  • 4 Andras P, Wennekers T. Cortical activity pattern computation.  Biosystems. 2007;  , Feb; 87 ((2-3)) 179-185
  • 5 Beckmann H, Jakob H. Prenatal developmental disorders of brain structures in schizophrenic psychoses Nervenarzt.  1994;  , Jul; 65 ((7)) 454-463
  • 6 Bender W, Albus M, Moller HJ, Tretter F. Towards systemic theories in biological psychiatry.  Pharmacopsychiatry. 2006;  , Feb; 39 (Suppl) 1 S4-S9
  • 7 Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, Frank JA, Pickar D, Weinberger DR. The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia.  Neuropsychopharmacology. 2000;  , Feb; 22 ((2)) 125-132
  • 8 Bosl WJ. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery.  BMC Syst Biol. 2007;  , Feb 15; 1 13
  • 9 Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain.  Acta Pharmacol Toxicol (Copenh). 1963;  20 140-144
  • 10 Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia-therapeutic implications.  Biol Psychiatry. 1999;  , Nov 15; 46 ((10)) 1388-1395
  • 11 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharmacopsychiatry. 2006;  , Feb; 39 (Suppl 1) S10-S14
  • 12 Cohen JD, Braver TS, Brown JW. Computational perspectives on dopamine function in prefrontal cortex.  Curr Opin Neurobiol. 2002;  , Apr; 12 ((2)) 223-229
  • 13 Contreras-Vidal JL, Schultz W. A predictive reinforcement model of dopamine neurons for learning approach behavior.  J Comput Neurosci. 1999;  , May-Jun; 6 ((3)) 191-214
  • 14 Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia.  J Neurosci. 1991;  , Jul; 11 ((7)) 1907-1917
  • 15 Durstewitz D. A few important points about dopamine's role in neural network dynamics.  Pharmacopsychiatry. 2006;  , Feb; 39 (Suppl 1) S72-S75
  • 16 Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.  Proc Natl Acad Sci USA. 2001;  , Jun 5; 98 ((12)) 6917-6922
  • 17 Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?.  J Psychiatr Res. 1982-1983;  17 ((4)) 319-334
  • 18 Frank MJ, Seeberger LC, O'reilly RC. By carrot or by stick: cognitive reinforcement learning in parkinsonism.  Science. 2004;  , Dec 10 ; 306 ((5703)) 1940-1943
  • 19 Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF, Goldman D, Winterer G. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing.  Biol Psychiatry. 2003;  , Jul 1; 54 ((1)) 40-48
  • 20 Gallinat J, Gotz T, Kalus P, Bajbouj M, Sander T, Winterer G. Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans.  J Cogn Neurosci. 2007;  , Jan; 19 ((1)) 59-68
  • 21 Gallinat J, Heinz A. Combination of multimodal imaging and molecular genetic information to investigate complex psychiatric disorders.  Pharmacopsychiatry. 2006;  , Feb; 39 (Suppl 1) S76-S79
  • 22 Gallinat J, Kunz D, Lang UE, Neu P, Kassim N, Kienast T, Seifert F, Schubert F, Bajbouj M. Association between cerebral glutamate and human behaviour: the sensation seeking personality trait.  Neuroimage. 2007;  , Jan 15; 34 ((2)) 671-678
  • 23 Gallinat J, Winterer G, Herrmann CS, Senkowski D. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing.  Clin Neurophysiol. 2004;  , Aug; 115 ((8)) 1863-1874
  • 24 Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M. Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex.  Proc Natl Acad Sci USA. 1989;  , Nov; 86 ((22)) 9015-9019
  • 25 Grace AA, Moore H, O'Donnell P. The modulation of corticoaccumbens transmission by limbic afferents and dopamine: a model for the pathophysiology of schizophrenia.  Adv Pharmacol. 1998;  42 721-724
  • 26 Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia.  Neuroscience. 1991;  41 ((1)) 1-24
  • 27 Grant SG. Systems biology in neuroscience: bridging genes to cognition.  Curr Opin Neurobiol. 2003;  , Oct; 13 ((5)) 577-582
  • 28 Haber SN, Fudge JL. The primate substantia nigra and VTA: integrative circuitry and function.  Crit Rev Neurobiol. 1997;  11 ((4)) 323-342
  • 29 Heimer L, Zahm DS, Alheid GG. Basal ganglia. In Paxinos, G., ed. The Rat Nervous System. San Diego, CA: Academic Press 1995: 579-628
  • 30 Heinz A, Saunders RC, Kolachana BS, Jones DW, Gorey JG, Bachevalier J, Weinberger DR. Striatal dopamine receptors and transporters in monkeys with neonatal temporal limbic damage.  Synapse. 1999;  , May; 32 ((2)) 71-79
  • 31 Heinz A. Dopaminergic dysfunction in alcoholism and schizophrenia-psychopathological and behavioral correlates.  Eur Psychiatry. 2002;  , Mar; 17 ((1)) 9-16
  • 32 Jentsch JD, Taylor JR, Roth RH. Subchronic phencyclidine administration increases mesolimbic dopaminergic system responsivity and augments stress- and psychostimulant-induced hyperlocomotion.  Neuropsychopharmacology. 1998;  , Aug; 19 ((2)) 105-113
  • 33 Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wustenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics.  Psychopharmacology (Berl). 2006b;  , Aug; 187 ((2)) 222-228
  • 34 Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A. Dysfunction of ventral striatal reward prediction in schizophrenia.  Neuroimage. 2006a;  , Jan 15; 29 ((2)) 409-416 , Epub 2005 Sep 1.
  • 35 Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Heertum RL Van, Cooper TB, Carlsson A, Laruelle M. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia.  Biol Psychiatry. 2000;  , Oct 1; 48 ((7)) 627-640
  • 36 Kolachana BS, Saunders RC, Weinberger DR. Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey.  Neuroscience. 1995;  , Dec; 69 ((3)) 859-868
  • 37 Krystal JH, Perry  Jr  EB, Gueorguieva R, Belger A, Madonick SH, Abi-Dargham A, Cooper TB, Macdougall L, Abi-Saab W, D'Souza DC. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function.  Arch Gen Psychiatry. 2005;  , Sep; 62 ((9)) 985-994
  • 38 Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies.  J Psychopharmacol. 1999;  , Dec; 13 ((4)) 358-371
  • 39 Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia.  Neuropsychopharmacology. 1993;  , Aug; 9 ((1)) 67-75
  • 40 Lipska BK, Weinberger DR. Prefrontal cortical and hippocampal modulation of dopamine-mediated effects.  Adv Pharmacol. 1998;  42 806-809
  • 41 Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine.  Proc Natl Acad Sci USA. 2003;  , May 13; 100 ((10)) 6186-6191
  • 42 Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia.  Nat Neurosci. 2002;  , Mar; 5 ((3)) 267-271
  • 43 Miller DW, Abercrombie ED. Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats.  Brain Res Bull. 1996;  40 ((1)) 57-62
  • 44 Montag C, Heinz A, Kunz D, Gallinat J. Self-reported empathic abilities in schizophrenia.  Schizophr Res. 2007;  , May; 92 ((1-3)) 85-89
  • 45 Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial.  Nat Med. 2007;  , Oct; 13 ((9)) 1102-1107
  • 46 Pearlson GD. Psychiatric and medical syndromes associated with phencyclidine (PCP) abuse.  Johns Hopkins Med J. 1981;  , Jan; 148 ((1)) 25-33
  • 47 Pycock CJ, Kerwin RW, Carter CJ. Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats.  Nature. 1980;  , Jul 3; 286 ((5768)) 74-76
  • 48 Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward.  Science. 1997;  , Mar 14; 275 ((5306)) 1593-1599
  • 49 Sesack SR, Carr DB, Omelchenko N, Pinto A. Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions.  Ann NY Acad Sci. 2003;  , Nov; 1003 36-52
  • 50 Thompson JL, Pogue-Geile MF, Grace AA. Developmental pathology, dopamine, and stress: a model for the age of onset of schizophrenia symptoms.  Schizophr Bull. 2004;  30 ((4)) 875-900
  • 51 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodology of systemic modeling.  Pharmacopsychiatry. 2006;  , Feb; 39 (Suppl 1) S26-S35
  • 52 Wang XJ. Toward a prefrontal microcircuit model for cognitive defi-cits in schizophrenia.  Pharmacopsychiatry. 2006;  , Feb; 39 (Suppl 1) S80-S87
  • 53 Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia.  Arch Gen Psychiatry. 1987;  , Jul; 44 ((7)) 660-669
  • 54 Wennekers T, Ay N, Andras P. High-resolution multiple-unit EEG in cat auditory cortex reveals large spatio-temporal stochastic interactions.  Biosystems. 2007;  , May-Jun; 89 ((1-3)) 190-197
  • 55 West AR, Grace AA. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis.  J Neurosci. 2002;  , Jan 1; 22 ((1)) 294-304
  • 56 Willner P. The dopamine hypothesis of schizophrenia: current status, future prospects.  Int Clin Psychopharmacol. 1997;  , Nov; 12 ((6)) 297-308
  • 57 Zangen A, Hyodo K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens.  Neuroreport. 2002;  , Dec 20; 13 ((18)) 2401-2405

Correspondence

PD Dr. J. Gallinat

Klinik für Psychiatrie und Psychotherapie

Charité Universitätsmedizin Berlin

Charité Campus Mitte

Charitéplatz 1

10117 Berlin

Germany

Phone: +49/30/450 517 07 0

Fax: +49/30/450 517 96 2

Email: juergen.gallinat@charite.de

    >