Semin Liver Dis 2007; 27(4): 413-426
DOI: 10.1055/s-2007-991517
© Thieme Medical Publishers

Hepatic Fibrogenesis

Jinsheng Guo1 , 2 , Scott L. Friedman1
  • 1Division of Liver Diseases, Mount Sinai Hospital, Mount Sinai School of Medicine, New York, New York
  • 2Division of Digestive Diseases, Zhongshan Hospital, Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
Further Information

Publication History

Publication Date:
02 November 2007 (online)

ABSTRACT

Hepatic fibrogenesis represents a wound-healing response of liver to a variety of insults, ultimately leading to decompensated cirrhosis in many patients and accounting for extensive morbidity and mortality worldwide. The net accumulation of extracellular matrix (ECM) in liver injury arises from increased synthesis by activated hepatic stellate cells and other hepatic fibrogenic cell types, as well as from bone marrow and circulating fibrocytes. Concurrently, degradation of ECM by matrix metalloproteinases (MMPs) fails to keep pace with increased synthesis, in part due to sustained expression of MMP inhibitors (e.g., tissue inhibitors of metalloproteinases). A growing list of circulating, paracrine, and autocrine mediators have been identified that amplify the fibrogenic response of liver. Combined with accelerating knowledge about signaling pathways and genetic determinants, major advances are anticipated in new diagnostics and therapies that will transform the care of patients with chronic liver diseases in the coming years.

REFERENCES

  • 1 Schuppan D, Ruehl M, Somasundaram R, Hahn E G. Matrix as a modulator of hepatic fibrogenesis.  Semin Liver Dis. 2001;  21 351-372
  • 2 Rojkind M, Giambrone M A, Biempica L. Collagen types in normal and cirrhotic liver.  Gastroenterology. 1979;  76 710-719
  • 3 McGuire R F, Bissell D M, Boyles J, Roll F J. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver.  Hepatology. 1992;  15 989-997
  • 4 Corpechot C, Barbu V, Wendum D et al.. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis.  Hepatology. 2002;  35 1010-1021
  • 5 Medina J, Arroyo A G, Sanchez-Madrid F, Moreno-Otero R. Angiogenesis in chronic inflammatory liver disease.  Hepatology. 2004;  39 1185-1195
  • 6 Arteel G E. Oxidants and antioxidants in alcohol-induced liver disease.  Gastroenterology. 2003;  124 778-790
  • 7 Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis.  J Hepatol. 2001;  35 297-306
  • 8 Nieto N, Friedman S L, Cederbaum A I. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells.  J Biol Chem. 2002;  277 9853-9864
  • 9 Galli A, Svegliati-Baroni G, Ceni E et al.. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism.  Hepatology. 2005;  41 1074-1084
  • 10 Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells.  Hepatology. 2000;  31 141-148
  • 11 Wang Y Q, Luk J M, Ikeda K et al.. Regulatory role of vHL/HIF-1alpha in hypoxia-induced VEGF production in hepatic stellate cells.  Biochem Biophys Res Commun. 2004;  317 358-362
  • 12 Jeong W I, Do S H, Yun H S et al.. Hypoxia potentiates transforming growth factor-beta expression of hepatocyte during the cirrhotic condition in rat liver.  Liver Int. 2004;  24 658-668
  • 13 Henderson N C, Iredale J P. Liver fibrosis: cellular mechanisms of progression and resolution.  Clin Sci (Lond). 2007;  112 265-280
  • 14 Mehal W Z. Activation-induced cell death of hepatic stellate cells by the innate immune system.  Gastroenterology. 2006;  130 600-603
  • 15 Tsukamoto H. Redox regulation of cytokine expression in Kupffer cells.  Antioxid Redox Signal. 2002;  4 741-748
  • 16 Tomita K, Tamiya G, Ando S et al.. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.  Gut. 2006;  55 415-424
  • 17 Sprenger H, Kaufmann A, Garn H, Lahme B, Gemsa D, Gressner A M. Induction of neutrophil-attracting chemokines in transforming rat hepatic stellate cells.  Gastroenterology. 1997;  113 277-285
  • 18 Marra F, Valente A J, Pinzani M, Abboud H E. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines.  J Clin Invest. 1993;  92 1674-1680
  • 19 Guicciardi M E, Gores G J. Apoptosis: a mechanism of acute and chronic liver injury.  Gut. 2005;  54 1024-1033
  • 20 Canbay A, Feldstein A E, Higuchi H et al.. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression.  Hepatology. 2003;  38 1188-1198
  • 21 Zhan S S, Jiang J X, Wu J et al.. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo.  Hepatology. 2006;  43 435-443
  • 22 Canbay A, Friedman S, Gores G J. Apoptosis: the nexus of liver injury and fibrosis.  Hepatology. 2004;  39 273-278
  • 23 Adams L A, Angulo P. Recent concepts in non-alcoholic fatty liver disease.  Diabet Med. 2005;  22 1129-1133
  • 24 Caldwell S H, Chang C Y, Nakamoto R K, Krugner-Higby L. Mitochondria in nonalcoholic fatty liver disease.  Clin Liver Dis. 2004;  8 595-617
  • 25 Machado M, Cortez-Pinto H. Non-alcoholic steatohepatitis and metabolic syndrome.  Curr Opin Clin Nutr Metab Care. 2006;  9 637-642
  • 26 Fartoux L, Poujol-Robert A, Guéchot J, Wendum D, Poupon R, Serfaty L. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C.  Gut. 2005;  54 1003-1008
  • 27 Walsh M J, Vanags D M, Clouston A D et al.. Steatosis and liver cell apoptosis in chronic hepatitis C: a mechanism for increased liver injury.  Hepatology. 2004;  39 1230-1238
  • 28 Ekstedt M, Franzen L E, Mathiesen U L et al.. Long-term follow-up of patients with NAFLD and elevated liver enzymes.  Hepatology. 2006;  44 865-873
  • 29 Walsh M J, Jonsson J R, Richardson M M et al.. Non-response to antiviral therapy is associated with obesity and increased hepatic expression of suppressor of cytokine signalling 3 (SOCS-3) in patients with chronic hepatitis C, viral genotype 1.  Gut. 2006;  55 529-535
  • 30 Harrison S A, Brunt E M, Qazi R A et al.. Effect of significant histologic steatosis or steatohepatitis on response to antiviral therapy in patients with chronic hepatitis C.  Clin Gastroenterol Hepatol. 2005;  3 604-609
  • 31 Reeves H L, Burt A D, Wood S, Day C P. Hepatic stellate cell activation occurs in the absence of hepatitis in alcoholic liver disease and correlates with the severity of steatosis.  J Hepatol. 1996;  25 677-683
  • 32 McCullough A J. Pathophysiology of nonalcoholic steatohepatitis.  J Clin Gastroenterol. 2006;  40(suppl 1) S17-S29
  • 33 Farrell G C, Larter C Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis.  Hepatology. 2006;  43(suppl 1) S99-S112
  • 34 Issa R, Zhou X, Constandinou C M et al.. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking.  Gastroenterology. 2004;  126 1795-1808
  • 35 Benyon R C, Arthur M J. Extracellular matrix degradation and the role of hepatic stellate cells.  Semin Liver Dis. 2001;  21 373-384
  • 36 Bigg H F, Rowan A D, Barker M D, Cawston T E. Activity of matrix metalloproteinase-9 against native collagen types I and III.  FEBS J. 2007;  274 1246-1255
  • 37 Iredale J P, Benyon R C, Arthur M J et al.. Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis.  Hepatology. 1996;  24 176-184
  • 38 Yoshiji H, Kuriyama S, Miyamoto Y et al.. Tissue inhibitor of metalloproteinases-1 promotes liver fibrosis development in a transgenic mouse model.  Hepatology. 2000;  32 1248-1254
  • 39 Murphy F R, Issa R, Zhou X et al.. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis.  J Biol Chem. 2002;  277 11069-11076
  • 40 Yoshiji H, Kuriyama S, Yoshii J et al.. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse.  Hepatology. 2002;  36 850-860
  • 41 Parsons C J, Bradford B U, Pan C Q et al.. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats.  Hepatology. 2004;  40 1106-1115
  • 42 Henderson N C, Mackinnon A C, Farnworth S L et al.. Galectin-3 regulates myofibroblast activation and hepatic fibrosis.  Proc Natl Acad Sci USA. 2006;  103 5060-5065
  • 43 Maeda N, Kawada N, Seki S et al.. Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways.  J Biol Chem. 2003;  278 18938-18944
  • 44 Ng V L, Sabla G E, Melin-Aldana H, Kelley-Loughnane N, Degen J L, Bezerra J A. Plasminogen deficiency results in poor clearance of non-fibrin matrix and persistent activation of hepatic stellate cells after an acute injury.  J Hepatol. 2001;  35 781-789
  • 45 Olaso E, Ikeda K, Eng F J et al.. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells.  J Clin Invest. 2001;  108 1369-1378
  • 46 Carloni V, Romanelli R G, Pinzani M, Laffi G, Gentilini P. Expression and function of integrin receptors for collagen and laminin in cultured human hepatic stellate cells.  Gastroenterology. 1996;  110 1127-1136
  • 47 Russo F P, Alison M R, Bigger B W et al.. The bone marrow functionally contributes to liver fibrosis.  Gastroenterology. 2006;  130 1807-1821
  • 48 Kisseleva T, Uchinami H, Feirt N et al.. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis.  J Hepatol. 2006;  45 429-438
  • 49 Kalluri R, Neilson E G. Epithelial-mesenchymal transition and its implications for fibrosis.  J Clin Invest. 2003;  112 1776-1784
  • 50 Zeisberg M, Shah A A, Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney.  J Biol Chem. 2005;  280 8094-8100
  • 51 Xia J L, Dai C, Michalopoulos G K, Liu Y. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation.  Am J Pathol. 2006;  168 1500-1512
  • 52 Gawrieh S, Papouchado B G, Burgart L J, Kobayashi S, Charlton M R, Gores G J. Early hepatic stellate cell activation predicts severe hepatitis C recurrence after liver transplantation.  Liver Transpl. 2005;  11 1207-1213
  • 53 Friedman S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver.  Physiol Rev. 2008;  , In press
  • 54 Schulze-Krebs A, Preimel D, Popov Y et al.. Hepatitis C virus-replicating hepatocytes induce fibrogenic activation of hepatic stellate cells.  Gastroenterology. 2005;  129 246-258
  • 55 Bataller R, Paik Y H, Lindquist J N, Lemasters J J, Brenner D A. Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells.  Gastroenterology. 2004;  126 529-540
  • 56 Schäffler A, Schölmerich J, Büchler C. Mechanisms of disease: adipocytokines and visceral adipose tissue-emerging role in nonalcoholic fatty liver disease.  Nat Clin Pract Gastroenterol Hepatol. 2005;  2 273-280
  • 57 Kaser S, Moschen A, Cayon A et al.. Adiponectin and its receptors in non-alcoholic steatohepatitis.  Gut. 2005;  54 117-121
  • 58 Friedman S L. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications.  Nat Clin Pract Gastroenterol Hepatol. 2004;  1 98-105
  • 59 Iredale J P. Hepatic stellate cell behavior during resolution of liver injury.  Semin Liver Dis. 2001;  21 427-436
  • 60 Pinzani M. PDGF and signal transduction in hepatic stellate cells.  Front Biosci. 2002;  7 d1720-d1726
  • 61 Marra F, Grandaliano G, Valente A J, Abboud H E. Thrombin stimulates proliferation of liver fat-storing cells and expression of monocyte chemotactic protein-1: potential role in liver injury.  Hepatology. 1995;  22 780-787
  • 62 Yang C, Zeisberg M, Mosterman B et al.. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors.  Gastroenterology. 2003;  124 147-159
  • 63 Patsenker E, Popov Y, Wiesner M, Goodman S L, Schuppan D. Pharmacological inhibition of the vitronectin receptor abrogates PDGF-BB-induced hepatic stellate cell migration and activation in vitro.  J Hepatol. 2007;  46 878-887
  • 64 Lee J S, Kang Decker N, Chatterjee S, Yao J, Friedman S, Shah V. Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts.  Am J Pathol. 2005;  166 1861-1870
  • 65 Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner A M. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts.  Hepatology. 2000;  31 1094-1106
  • 66 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells.  Semin Liver Dis. 2001;  21 397-416
  • 67 Rockey D C. Vascular mediators in the injured liver.  Hepatology. 2003;  37 4-12
  • 68 Iredale J P. Cirrhosis: new research provides a basis for rational and targeted treatments.  BMJ. 2003;  327 143-147
  • 69 Okuno M, Kojima S, Akita K et al.. Retinoids in liver fibrosis and cancer.  Front Biosci. 2002;  7 d204-d218
  • 70 Li H, Zhang J, Huang G et al.. Effect of retinoid kappa receptor alpha (RXRalpha) transfection on the proliferation and phenotype of rat hepatic stellate cells in vitro.  Chin Med J (Engl). 2002;  115 928-932
  • 71 Hellemans K, Verbuyst P, Quartier E et al.. Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids.  Hepatology. 2004;  39 97-108
  • 72 Paik Y H, Schwabe R F, Bataller R, Russo M P, Jobin C, Brenner D A. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.  Hepatology. 2003;  37 1043-1055
  • 73 Paik Y H, Lee K S, Lee H J et al.. Hepatic stellate cells primed with cytokines upregulate inflammation in response to peptidoglycan or lipoteichoic acid.  Lab Invest. 2006;  86 676-686
  • 74 Brun P, Castagliuolo I, Pinzani M, Palu G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells.  Am J Physiol Gastrointest Liver Physiol. 2005;  289 G571-G578
  • 75 Viñas O, Bataller R, Sancho-Bru P et al.. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation.  Hepatology. 2003;  38 919-929
  • 76 Winau F, Hegasy G, Weiskirchen R et al.. Ito cells are liver-resident antigen-presenting cells for activating T cell responses.  Immunity. 2007;  26 117-129
  • 77 Safadi R, Ohta M, Alvarez C E et al.. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes.  Gastroenterology. 2004;  127 870-882
  • 78 Radaeva S, Sun R, Jaruga B, Nguyen V T, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners.  Gastroenterology. 2006;  130 435-452
  • 79 Jeong W I, Park O, Radaeva S, Gao B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity.  Hepatology. 2006;  44 1441-1451
  • 80 Ito T, Nemoto M. Uber die Kupfferschen Sternzellen und die ‘Fettspeicherungszellen’ (‘fat storing cells’) in der Blutkapillarenwand der menschlichen Leber.  Okajimas Folia Anat Jpn. 1952;  24 243-258
  • 81 Geerts A. On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal?.  J Hepatol. 2004;  40 331-334
  • 82 Cassiman D, Barlow A, Vander Borght S, Libbrecht L, Pachnis V. Hepatic stellate cells do not derive from the neural crest.  J Hepatol. 2006;  44 1098-1104
  • 83 Suskind D L, Muench M O. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34 + cytokeratin 7/8 + cells express markers for stellate cells.  J Hepatol. 2004;  40 261-268
  • 84 Kordes C, Sawitza I, Muller-Marbach A et al.. CD133+ hepatic stellate cells are progenitor cells.  Biochem Biophys Res Commun. 2007;  352 410-417
  • 85 Beaussier M, Wendum D, Schiffer E et al.. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries.  Lab Invest. 2007;  87 292-303
  • 86 Baba S, Fujii H, Hirose T et al.. Commitment of bone marrow cells to hepatic stellate cells in mouse.  J Hepatol. 2004;  40 255-260
  • 87 Forbes S J, Russo F P, Rey V et al.. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis.  Gastroenterology. 2004;  126 955-963
  • 88 Bilzer M, Roggel F, Gerbes A L. Role of Kupffer cells in host defense and liver disease.  Liver Int. 2006;  26 1175-1186
  • 89 Duffield J S, Forbes S J, Constandinou C M et al.. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair.  J Clin Invest. 2005;  115 56-65
  • 90 Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats.  Gastroenterology. 2005;  128 138-146
  • 91 Jarnagin W R, Rockey D C, Koteliansky V E, Wang S S, Bissell D M. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis.  J Cell Biol. 1994;  127 2037-2048
  • 92 Sedlaczek N, Jia J D, Bauer M et al.. Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis.  Am J Pathol. 2001;  158 1239-1244
  • 93 Kinnman N, Hultcrantz R, Barbu V et al.. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury.  Lab Invest. 2000;  80 697-707
  • 94 Jhandier M N, Kruglov E A, Lavoie E G, Sévigny J, Dranoff J A. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2.  J Biol Chem. 2005;  280 22986-22992
  • 95 Kruglov E A, Nathanson R A, Nguyen T, Dranoff J A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G765-G771
  • 96 Novobrantseva T I, Majeau G R, Amatucci A et al.. Attenuated liver fibrosis in the absence of B cells.  J Clin Invest. 2005;  115 3072-3082
  • 97 Melhem A, Muhanna N, Bishara A et al.. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC.  J Hepatol. 2006;  45 60-71
  • 98 Crotta S, Stilla A, Wack A et al.. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein.  J Exp Med. 2002;  195 35-41
  • 99 Tseng C T, Klimpel G R. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions.  J Exp Med. 2002;  195 43-49
  • 100 Mazzocca A, Sciammetta S C, Carloni V et al.. Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells.  J Biol Chem. 2005;  280 11329-11339
  • 101 Kaisho T, Akira S. Toll-like receptor function and signaling.  J Allergy Clin Immunol. 2006;  117 979-987
  • 102 Schwabe R F, Seki E, Brenner D A. Toll-like receptor signaling in the liver.  Gastroenterology. 2006;  130 1886-1900
  • 103 Lee J Y, Ye J, Gao Z et al.. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids.  J Biol Chem. 2003;  278 37041-37051
  • 104 Jiang D, Liang J, Fan J et al.. Regulation of lung injury and repair by Toll-like receptors and hyaluronan.  Nat Med. 2005;  11 1173-1179
  • 105 Lee J Y, Sohn K H, Rhee S H, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4.  J Biol Chem. 2001;  276 16683-16689
  • 106 Smiley S T, King J A, Hancock W W. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4.  J Immunol. 2001;  167 2887-2894
  • 107 Okamura Y, Watari M, Jerud E S et al.. The extra domain A of fibronectin activates Toll-like receptor 4.  J Biol Chem. 2001;  276 10229-10233
  • 108 Chen X, Sun Z, Du X, Liu C, Liu Y, Wu L. Study on the relationship between heat shock protein 70 and toll-like receptor-4 of monocytes.  J Huazhong Univ Sci Technolog Med Sci. 2004;  24 560-562
  • 109 Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex.  J Immunol. 2000;  164 558-561
  • 110 Park J S, Svetkauskaite D, He Q et al.. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein.  J Biol Chem. 2004;  279 7370-7377
  • 111 Brunn G J, Bungum M K, Johnson G B, Platt J L. Conditional signaling by Toll-like receptor 4.  FASEB J. 2005;  19 872-874
  • 112 Yohe H C, O'Hara K A, Hunt J A et al.. Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G1269-G1279
  • 113 Isogawa M, Robek M D, Furuichi Y, Chisari F V. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo.  J Virol. 2005;  79 7269-7272
  • 114 Takayashiki T, Yoshidome H, Kimura F et al.. Increased expression of toll-like receptor 4 enhances endotoxin-induced hepatic failure in partially hepatectomized mice.  J Hepatol. 2004;  41 621-628
  • 115 Shi H, Kokoeva M V, Inouye K, Tzameli I, Yin H, Flier J S. TLR4 links innate immunity and fatty acid-induced insulin resistance.  J Clin Invest. 2006;  116 3015-3025
  • 116 Seki E, De Minicis S, Österreicher C H et al.. TLR4 mediates hepatic fibrosis by downregulating TGFβ pseudoreceptor BAMBI and enhancing TGFβ signaling.  Nat Med. 2007;  , In press
  • 117 Breitkopf K, Godoy P, Ciuclan L, Singer M V, Dooley S. TGF-beta/Smad signaling in the injured liver.  Z Gastroenterol. 2006;  44 57-66
  • 118 Inagaki Y, Okazaki I. Emerging insights into transforming growth factor beta Smad signal in hepatic fibrogenesis.  Gut. 2007;  56 284-292
  • 119 Uemura M, Swenson E S, Gaça M D, Giordano F J, Reiss M, Wells R G. Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization.  Mol Biol Cell. 2005;  16 4214-4224
  • 120 Danen E H. Integrins: regulators of tissue function and cancer progression.  Curr Pharm Des. 2005;  11 881-891
  • 121 Xu Y, Gurusiddappa S, Rich R L et al.. Multiple binding sites in collagen type I for the integrins alpha1beta1 and alpha2beta1.  J Biol Chem. 2000;  275 38981-38989
  • 122 Zhou X, Murphy F R, Gehdu N, Zhang J, Iredale J P, Benyon R C. Engagement of alphavbeta3 (αvβ3) integrin regulates proliferation and apoptosis of hepatic stellate cells.  J Biol Chem. 2004;  279 23996-24006
  • 123 Sheppard D. Integrin-mediated activation of latent transforming growth factor beta.  Cancer Metastasis Rev. 2005;  24 395-402
  • 124 Wells R G. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis.  J Clin Gastroenterol. 2005;  39 S158-S161
  • 125 Jiang F, Parsons C J, Stefanovic B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation.  J Hepatol. 2006;  45 401-409
  • 126 Brigstock D R. The CCN family: a new stimulus package.  J Endocrinol. 2003;  178 169-175
  • 127 Jiménez W. Endocannabinoids and liver disease.  Hepatology. 2005;  41 983-985
  • 128 Julien B, Grenard P, Teixeira-Clerc F et al.. Antifibrogenic role of the cannabinoid receptor CB2 in the liver.  Gastroenterology. 2005;  128 742-755
  • 129 Teixeira-Clerc F, Julien B, Grenard P et al.. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis.  Nat Med. 2006;  12 671-676
  • 130 Perwitz N, Fasshauer M, Klein J. Cannabinoid receptor signaling directly inhibits thermogenesis and alters expression of adiponectin and visfatin.  Horm Metab Res. 2006;  38 356-358
  • 131 Friedman S L. Reefer madness? Assessing the effects of cannabinoids with a less jaundiced eye.  J Hepatol. 2007;  46 180-182
  • 132 Gäbele E, Reif S, Tsukada S et al.. The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation.  J Biol Chem. 2005;  280 13374-13382
  • 133 Sicklick J K, Li Y X, Choi S S et al.. Role for hedgehog signaling in hepatic stellate cell activation and viability.  Lab Invest. 2005;  85 1368-1380
  • 134 Neef M, Ledermann M, Saegesser H et al.. Oral imatinib treatment reduces early fibrogenesis but does not prevent progression in the long term.  J Hepatol. 2006;  44 167-175
  • 135 Hadziyannis S J, Tassopoulos N C, Heathcote E J et al.. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years.  Gastroenterology. 2006;  131 1743-1751
  • 136 Bonis P A, Friedman S L, Kaplan M M. Is liver fibrosis reversible?.  N Engl J Med. 2001;  344 452-454
  • 137 Herbst H, Wege T, Milani S et al.. Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis.  Am J Pathol. 1997;  150 1647-1659
  • 138 Desmet V J, Roskams T. Cirrhosis reversal: a duel between dogma and myth.  J Hepatol. 2004;  40 860-867

Scott L FriedmanM.D. 

Division of Liver Diseases, Mount Sinai School of Medicine

Box 1123, 1425 Madison Avenue, Room 1170C, New York, NY 10029

Email: scott.friedman@mssm.edu

    >