Planta Med 2007; 73(12): 1304-1308
DOI: 10.1055/s-2007-990226
Natural Product Chemistry
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Flavonoids, Coumarins and Triterpenes from the Aerial Parts of Cnidoscolus texanus

Wei Yuan1 , Shiyou Li1 , Stacy Ownby1 , Zhizhen Zhang1 , Ping Wang1 , Wanli Zhang1 , R. Scott Beasley1
  • 1National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, Texas, U.S.A.
Further Information

Publication History

Received: June 25, 2007 Revised: August 21, 2007

Accepted: August 27, 2007

Publication Date:
24 September 2007 (online)

Abstract

Phytochemical investigation on Cnidoscolus texanus led to the isolation of 26 compounds, which included 15 flavonoids (1 - 15), three coumarins (16 - 18), three coumaric acid derivatives (19 - 21), four triterpenoids (22 - 25), and one phytosterol (26). Among them, aromadendrin 7-O-(4′′-O-p-E-coumaroyl-β-glucopyranoside) (1), aromadendrin 7-O-(3′′,6′′-di-O-p-E-coumaroyl-β-glucopyranoside) (2), and naringenin 7-O-(4′′-O-p-Z-coumaroyl-β-glucopyranoside) (3) are new compounds. Their structures were determined by spectroscopic and chemical methods. All flavonoids were found to be inactive against DNA topoisomerase I.

References

  • 1 Kolterman D A, Breckon G J. Chemotaxonomic studies in Cnidoscolus (Euphorbiaceae). I. Flavonol glycosides of the C. tubulosus complex.  Syst Bot. 1982;  7 178-85.
  • 2 Delgado G, Hernández J. Yolanda M, Aguilar MI. Pentacyclic triterpenes from Cnidoscolus multilobus .  Planta Med. 1994;  60 389-90.
  • 3 Tull D. Edible and useful plants of Texas and the southwest: a practical guide. Austin; University of Texas Press 1999.
  • 4 Bhattacharyya J, Barros C B. Triterpenoids of Cnidosculus urens .  Phytochemistry. 1985;  23 274-6.
  • 5 Escalante-Erosa F, Ortegón-Campos I, Parra-Tabla V, Pena-Rodríguez L M. Chemical composition of the epicuticular wax of Cnidoscolus aconitifolius .  Rev Soc Quím Méx. 2004;  48 24-5.
  • 6 Brum B L, Honda N K, Hess S C, Cavalheiro A J, Monache F D. Acyl lupeols from Cnidoscolus vitifolius .  Phytochemistry. 1998;  49 1127-8.
  • 7 Kuti J O, Konuru H B. Antioxidant capacity and phenolic content in leaf extracts of tree spinach (Cnidoscolus spp.)  J Agric Food Chem. 2004;  52 117-21.
  • 8 Ohta T, Endo Y, Nozoe S. Faveloxide, a new isoprenoid derivative from the Brazilian plant, Cnidoscolus phyllacanthus .  Heterocycles. 1994;  38 55-6.
  • 9 Lookadoo S E, Pollard A J. Chemical contents of stinging trichomes of Cnidoscolus texanus .  J Chem Ecol. 1991;  17 1561-73.
  • 10 Rouse S H, Bienfang R. A note on the phytochemical study of the root of Cnidoscolus texanus (Muell. Arg.) Small.  J Am Pharm Assoc Am Pharm Assoc (Baltim). 1954;  43 699-700.
  • 11 Zhang Z, Li S, Zhang S. Six new triterpenoid saponins from the root and stem bark of Cephalanthus occidentalis .  Planta Med. 2005;  71 355-61.
  • 12 Zhang Z, Li S, Zhang S, Gorenstein D. Triterpenoid saponins from the fruits of Aesculus pavia .  Phytochemistry. 2006;  67 784-94.
  • 13 Webb M R, Ebeler S E. A gel electrophoresis assay for the simultaneous determination of topoisomerase I inhibition and DNA intercalation.  Anal Biochem. 2003;  321 22-30.
  • 14 Li Y, Zhao Y, Fan Y, Wang X, Cai L. Flavonoids from Speranskia tuber .  J Chin Pharm Sci. 1997;  6 70-4.
  • 15 Rahman W, Ishratullah K, Wagner H, Seligmann O, Chari V M, österdahl B G. Prunin-6′′-O-p-coumarate, a new acylated flavanone glycoside from Anacardium occidentale .  Phytochemistry. 1987;  17 1064-5.
  • 16 Mohan L J, Kumari G NK, Rao N SP. Flavonoid glycosides from Anisomeles ovata .  J Nat Prod. 1985;  48 150-1.
  • 17 Singh K N, Pandey V B, Banerjee S, Bohlmann F, Keinan E. Novel acyl flavone glycosides from Echinops echinatus .  Chem Ind London. 1986;  22 713-4.
  • 18 Rao L JM, Kumari G NK, Rao N SP. Anisofolin-A, a new acylated flavone glucoside from Anisomeles ovata R. Br.  Heterocycles. 1982;  19 1655-61.
  • 19 Rao L JM, Kumari G NK, Rao N SP. Two further acylated flavone glucosides from Anisomeles ovata .  Phytochemistry. 1983;  22 1058-60.
  • 20 Sakushima A, Nishibe S, Hisada S. A new flavonol glycoside from Cerbera manghas .  Phytochemistry. 1980;  19 712-3.
  • 21 Woo W S, Choi J S, Kang S S. A flavonol glucoside from Typha latifolia .  Phytochemistry. 1983;  22 2881-2.
  • 22 Yoshitama K, Oyamada T, Yahara S. Flavonoids in the leaves of Trillium undulatum .  J Plant Res. 1997;  110 379-81.
  • 23 Gamez E JC, Luyengi L, Lee S K, Zhu L F, Zhou B N, Fong H H. et al . Antioxidant flavonoid glycosides from Daphniphyllum calycinum .  J Nat Prod. 1998;  61 706-8.
  • 24 Hasan A, Ahmed I, Jay M, Voirin B. Flavonoid glycosides and an anthraquinone from Rumex chalepensis .  Phytochemistry. 1995;  39 1211-3.
  • 25 Murray R DH, Mendez J, Brown S A. The natural coumarins: occurrence, chemistry and biochemistry. New York; John Wiley & Sons 1982.
  • 26 Gaffield W. Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides.  Tetrahedron. 1970;  26 4093-108.
  • 27 Zhao J, Pawar R S, Ali Z, Khan I A. Phytochemical investigation of Turnera diffusa .  J Nat Prod. 2007;  70 289-92.
  • 28 Constantinou A, Mehta R, Runyan C, Ral K, Vaughan A, Moon R. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships.  J Nat Prod. 1995;  58 217-25.
  • 29 Boege F, Straub T, Kehr A, Boesenberg C, Christiansen K, Andersen A. et al . Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I.  J Biol Chem. 1996;  271 2262-70.

Dr. Shiyou Li

National Center for Pharmaceutical Crops

Arthur Temple College of Forestry and Agriculture

Stephen F. Austin State University

Nacogdoches

Texas 75965-6109

U.S.A.

Phone: +1-936-468-2071

Fax: +1 936-468-7058

Email: lis@sfasu.edu

    >