Minim Invasive Neurosurg 2007; 50(4): 212-218
DOI: 10.1055/s-2007-985871
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Pulsed Laser-Induced Liquid Jet Microcatheter System for Rapid and Reliable Fibrinolysis in Acute Cerebral Embolisms: Experiments on Safety and Preliminary Application in Porcine Cranial Vessels

Y. Sato 1 , A. Nakagawa 1 , T. Hirano 1 , T. Ohki 2 , H. Uenohara 3 , K. Takayama 4 , T. Tominaga 1
  • 1Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
  • 2Interdisciplinary Shock Wave Research Laboratory, Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University, Sendai, Japan
  • 3Department of Neurosurgery, Sendai Medical Center, Sendai, Japan
  • 4Nanomedicine, Tohoku University Biomedical Engineering Organization, Sendai, Japan
Further Information

Publication History

Publication Date:
19 October 2007 (online)

Abstract

Objective: The authors have incorporated a holmium: YAG laser-induced liquid jet (LILJ) within a microcatheter for rapid, safe, and reliable fibrinolysis, and reported its effectiveness in vitro. The purpose of this study is to evaluate an appropriate operation mode to minimize debris size and to apply the system in in vivo experiments using a porcine cranial artery model.

Materials: Evaluation of debris size: The relationships between laser energy and the size of the debris have been evaluated in in vitro experiments. Pulsed LILJ (3 Hz for 60 seconds) were applied to the artificial thrombi (made out of human blood taken from healthy volunteers) in a teflon tube (internal diameter: 4 mm) in the following operation modes: firstly, the laser energy was set at 0.6, 0.8, 1.0, 1.2, 1.4 W, and urokinase (UK) solution (12000 IU/mL) was supplied at rate of 40 mL/hour. In the 0.8 W operation, the concentrations of UK were changed between 0, 1200, 6000, and 12000 lU/mL. Immediately after application of LILJ, the remnant debris were collected and fixed with formaldehyde, and the size and numbers of debris were evaluated under a light microscope. Application in a porcine cranial artery model: The acute embolic models were made using four pigs: the artificial thrombi were made of porcine blood and 1 mL of embolus was used to occlude the left lingual artery via a catheter. After occlusion of lingual artery for 30 minutes, the LILJ microcatheter system was brought to the occlusion site via a guiding catheter and with the assistance of guide-wire. After every 2.5 minutes application of LILJ, angiographies were performed to evaluate the recanalization of the occluded vessels. Cold UK (1200 IU/mL) solution (4°C) was supplied at the rate of 40 mL/hour with laser operation (2 pigs) and without laser operation (2 pigs: control). The pigs were decapitated, and vessels at the laser irradiation sites were obtained to evaluate the damage to the vessel wall.

Results: Evaluation of debris size: After application of UK solution by the LILJ (12000 lU/mL), 48.7 (1.0 W) to 72.0% (0.8 W) of debris were under 200 μm in size, while 3.7 (0.8 W) to 17.0% (1.2 W) of them exceeded 600 μm, and the 0.8 W operation mode had a tendency to be the better operation mode. During the 0.8 W operation mode, 58 (without UK) to 72% (12000 lU/mi) of debris were under 200 μm in size, while 3.5 (12000 lU/mL) to 8.5% (without UK) of them exceeded 600 μm. Application in a porcine cranial artery model: Recanalization of the occluded vessels was obtained at 15 and 20 minutes in the treatment group. Histological specimens showed neither apparent mechanical nor thermal damage.

Conclusion: Although an additional system to collect debris, which cannot be dealt with in the pharmacological effect of fibrinolytics in the short-term, should be developed, the present results show the possibility of the LILJ microcatheter system to become a useful assistant device for the mechanical fragmentation of embolus and the enhancement of fibrinolytics.

References

  • 1 Philips MF, Bagley U, Sinson GP, Raps EC, Galetta SL, Zager EL, Hurst RW. Endovascular thrombolysis for symptomatic cerebral venous thrombosis.  J Neurosurg. 1999;  90 65-71
  • 2 Tirschwell DL, Coplin WM, Becker KJ, Vogelzang P, Eskridge J, Haynor D, Cohen W, Newell D, Winn HR, Longstreth Jr WT. Intra-arterial urokinase for acute ischemic stroke: factors associated with complications.  Neurology. 2001;  57 1100-1103
  • 3 Akiyama M, Ishibashi T, Yamada T, Furuhata H. Low frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro.  Neurosurgery. 1998;  43 828-833
  • 4 Alexandrov AV, Demchuk AM, Felberg RA, Christou I, Barber PA, Burgin WS, Malkoff M, Wojner AW, Grotta JC. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial Doppler monitoring.  Stroke. 2000;  31 610-614
  • 5 Behrens S, Daffertshofer M, Spiegel D, Hennerici M. Low-frequency, low-intensity ultrasound accelerates thrombolysis through the skull.  Ultrasound Med Biol. 1999;  25 269-273
  • 6 Daffertshofer M, Hennerici M. Ultrasound in the treatment of ischaemic stroke.  Lancet Neurol. 2003;  2 283-290
  • 7 Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots.  Ultrasound Med Biol. 1995;  21 419-424
  • 8 Ishibashi T, Akiyama M, Onoue H, Abe T, Furuhata H. Can transcranial ultrasonication increase recanalization flow with tissue plasminogen activator?.  Stroke. 2000;  33 1399-1404
  • 9 Lauer CG Burge R, Tang DB, Bass BG, Gomez ER, Alving BM. Effect of ultrasound on tissue-type plasminogen activator induced thrombolysis.  Circulation. 1992;  86 1257-1264
  • 10 Luo H, Steffen W, Cercek B, Arunasalam S, Maurer G, Siegel RJ. Enhancement of thrombolysis by external ultrasound.  Am Heart J. 1993;  125 1564-1569
  • 11 Spengos K, Behrens S, Daffertshofer M, Dempfle CE, Hennerici M. Acceleration of thrombolysis with ultrasound through the cranium in a flow model.  Ultrasound Med Biol. 2000;  26 889-895
  • 12 Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis.  Circulation. 1995;  92 1148-1150
  • 13 Tachibana T, Tachibana S. Prototype theraupetic ultrasound emitting catheter for accelerating thrombolysis.  J Ultrasound Med. 1997;  16 529-535
  • 14 Hassenstein S, Hanke H, Kamenz J, Oberhoff M, Hanke S, Riessen R, Haase KK, Betz E, Karsch KR. Vascular injury and time course of smooth muscle cell proliferation after experimental holmium laser angioplasty.  Circulation. 1992;  86 1575-1583
  • 15 Holmes DR, Mehta S, George CJ, Margolis JR, Leon MB, Isner JM, Bitti JA, King SB, Siegel RM, Sketch MH, Cowley MJ, Roubin GS, Brinker JA, Overlie PA, Tcheng J, Sanborn TA, Litvack F. Excimer laser coronary angioplasty: The new approaches to coronary intervention (NACI) experience.  Am J Cardiol. 1997;  80 99-105
  • 16 Leeuwen TG, Meertens JH, Velena E, Post MJ, Borst C. Intraluminal vapor bubble induced by Excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit.  Circulation. 1993;  87 1258-1263
  • 17 White CJ, Ramee SR, Collins TJ, Escobar A, Jam SP. Holmium: YAG laser-assisted coronary angioplasty with multifiber delivery catheters.  Cathet Cardiovasc Diagn. 1993;  30 205-210
  • 18 Bellon RJ, Putman CM, Budzik RF, Pergolizzi RS, Reinking GF, Norbash AM. Rheolytic thrombectomy of the occluded internal carotid artery in the setting of acute ischemic stroke.  AJNR Am J Neuroradiol. 2001;  22 526-530
  • 19 Chow K, Gobin YP, Saver J, Kidwell C, Dong P, Vinuela F. Endovascular treatment of dural sinus thrombosis with rheolytic thrombectomy and intra-arterial thrombolysis.  Stroke. 2000;  31 1420-1425
  • 20 Leary MC, Saver JL, Gobin YP, Jahan R, Duckwiler GR, Vinuela F, Kidwell CS, Frazee J, Starkman S. Beyond tissue plasminogen activator: mechanical intervention in acute stroke.  Ann Emerg Med. 2003;  41 838-846
  • 21 Lutsep HL, Campbell M, Clark WM. EPAR therapy system for treatment of acute stroke: safety study results [abstract].  Stroke. 2001;  32 319
  • 22 Hirano T, Komatsu M, Ezura M, Uenohara H, Takahashi A, Takayama K, Yoshimoto T. Formation of a liquid jet by interaction between a laser-induced bubble and a shock wave.  lnterv Neuroradiol. 2001;  7 ((Suppl)) 35-40
  • 23 Flirano T, Komatsu M, Saeki T, Uenohara H, Takahashi A, Takayama K, Yoshimoto T. Enhancement of fibrinolytics with a laser-induced liquid jet.  Laser Surg Med. 2001;  29 360-368
  • 24 Flirano T, Komatsu M, Uenohara H, Takahashi A, Takayama K, Yoshimoto T. A movel method of drug delivery for fibrinolysis with Ho:YAG laser-induced liquid jet.  Lasers Med Sci. 2002;  17 165-172
  • 25 Hirano T, Uenohara H, Komatsu M, Nakagawa A, Satoh M, Ohyama H, Takayama K, Yoshimoto T. Holmium: YAG laser-induced liquid jet dissector: A novel prototype device for dissecting organs without impairing vessels.  Minim Invas Neurosurg. 2003;  46 121-125
  • 26 Hirano T, Nakagawa A, Uenohara H, Ohyama H, Jokura H, Takayama K, Shirane R. Pulsed liquid jet dissector using holmium: YAG laser - a novel neurosurgical device for brain incision without impairing vessels.  Acta Neurochir (Wien). 2003;  145 401-406
  • 27 Nakagawa A, Hirano T, Komatsu M, Sato M, Uenohara H, Ohyama H, Kusaka Y, Shirane R, Takayama K, Yoshimoto T. Holmium: YAG laser-induced liquid jet knife: possible novel method for dissection.  Lasers Surg Med. 2002;  31 129-135
  • 28 Nakagawa A, Kusaka Y, Hirano T, Saito T, Shirane R, Takayama K, Yoshimoto T. Application of shock waves as a treatment modality in the vicinity of brain and skull.  J Neurosurg. 2003;  99 156-162
  • 29 Nakagawa A, Hirano T, Jokura H, Uenohara H, Ohki T, Hashimoto T, Menezes V, Sato Y, Kusaka Y, Ohyama H, Saito T, Takayama K, Shirane R, Tominaga T. Pulsed holmium: yttrium-alminum-garnet laser-induced liquid jet as a novel dissection device in neuroendoscopic surgery.  J Neurosurg. 2004;  101 145-150
  • 30 Ohki T, Nakagawa A, Hirano T, Hashimoto T, Menezes V, Jokura H, Uenohara H, Sato Y, Saito T, Shirane R, Tominaga T, Takayama K. Experimental application of pulsed Ho: YAG laser-induced liquid jet as a novel device for rigid neuroendoscope.  Lasers Surg Med. 2004;  34 227-234
  • 31 Chandler AB. In vitro thrombotic coagulation of the blood: A method for producing a thrombus.  Lab Invest. 1958;  7 110-114
  • 32 Angelini A, Reimers B, Barbera MD, Sacca A, Pasquetto G, Cernetti C, Valente M, Pascotto P, Thiene G. Cerebral protection during carotid artery stenting. Collection and histopathologic analysis of embolized debris.  Stroke. 2002;  33 456-461
  • 33 Lyden PD, Zivin JA, Clark WA, Madden K, Sasse KC, Mazzarella VA, Terry RD, Press GA. Tissue plasminogen activator-mediated thrombolysis of cerebral emboli and its effect on hemorrhagic infarction in rabbits.  Neurology. 1989;  39 703-708
  • 34 Zivin JA, DeGirolami U. Spinal cord infarction: a highly reproducible stroke model.  Stroke. 1980;  11 200-202
  • 35 Niessen F, Huger T, Hoehn M, Hossmann KA. Differences in clot preparation determine outcome of recombinant tissue plasminogen activator treatment in experimental thromboembolic stroke.  Stroke. 34 2003;  2019-2024
  • 36 Kodama T, Tatsuno M, Sugimoto, Uenohara H, Yoshimoto T, Takayama K. Liquid jets, accelerated thrombolysis: A study for revascularization of cerebral embolism.  Ultrasound Med Biol. 1999;  25 977-983
  • 37 Chopko BW, Kerber C, Wong W, Georgy B. Transcatheter snare removal of acute middle cerebral artery thromboembolism: Technical case report.  Neurosurgery. 2000;  46 1529-1531

Correspondence

A. NakagawaMD, PhD 

Department of Neurosurgery

Tohoku University Graduate School of Medicine

1-1 Seiryo-machi

Aoba-ku

980-8574 Sendai

Japan

Phone: +81/22/717 72 30

Fax: +81/22/717 72 33

Email: tonkan@zc5.so-net.ne.jp

    >