Zusammenfassung
Die Sauerstoffreserven bei kleinen Kindern sind klein, da einem hohen Sauerstoffverbrauch
eine geringe Transportkapazität gegenübersteht. Respiratorische Komplikationen sind
bei sonst gesunden Kindern die häufigste anästhesieassoziierte Ursache für Komplikationen.
Während der vergangenen Jahre hat das Wissen über die Auswirkungen verschiedener künstlicher
Atemwege auf die Atemwege von Kindern stark zugenommen. Moderne Anästhesiekonzepte
inkludieren neben der Spontanatmung auch den Gebrauch von Tuben mit Cuff.
Abstract
The oxygen reserves of infants are low because of high oxygen demand in combination
with low transport capacity. Respiratory adverse events are one of the major causes
of morbidity and mortality during paediatric anaesthesia. During the last years our
knowledge has grown substantially about the influence of artificial airways on the
airway of paediatric patients. Modern anaesthetic concepts in infants and children
include the use of cuffed tubes as well as a spontaneous breathing child.
Schlüsselwörter:
Kinderanästhesie - Beatmung - Luftwegsmanagement
Keywords:
paediatric anaesthesia - ventilation - airway management
Kernaussagen
-
Viele anatomische und physiologische Parameter hängen nicht vom Alter ab.
-
Das Risiko von Komplikationen wird unter anderem durch die Erfahrung des Anästhesisten
und die Art des operativen Eingriffs bestimmt.
-
Die Sauerstoffreserven von Kindern sind klein.
-
Für Kinder stehen inzwischen alle gängigen künstlichen Atemwege in passender Größe
zur Verfügung - sie alle können sinnvoll genutzt werden.
-
Der Microcuff®-Tubus ist eine gute Alternative zu herkömmlichen Tuben mit Cuff.
-
Moderne Anästhesiekonzepte erlauben differenzierte Beatmungsmodi inklusive Spontanatmungsverfahren.
-
Die Überwachung der respiratorischen Funktion bei Spontanatmung während Narkosen ist
non-invasiv möglich.
-
Das Tracheobronchialsystem ist bei Kindern sehr reagibel.
-
Mit dem Auftreten respiratorischer Komplikationen ist besonders während des Exzitationsstadiums
zu rechnen.
-
Für die Therapie respiratorischer Komplikationen sind vorausschauende Konzepte, z.B.
in Form fester Therapieschemata, sinnvoll.
Literatur:
- 1
Agostino E..
Volume-pressure relationships of the thorax and lung in the newborn.
J Appl Physiol.
1959;
19
909
- 2 Webster DW, Lopez K.. Neonatal and Infant AnatHomy and Physiology. In: Rasch DK,
Webster, D. E., ed. Clinical Manual of pediatric anesthesia New York: McGraw-Hill
1994: 14-26
- 3
Morrison Jr. JE, Collier E, Friesen RH, Logan L..
Preoxygenation before laryngoscopy in children: how long is enough?.
Paediatr Anaesth.
1998;
8
293-8
- 4
Patel R, Lenczyk M, Hannallah RS, McGill WA..
Age and the onset of desaturation in apnoeic children.
Can J Anaesth.
1994;
41
771-4
- 5
Hardman JG, Ross JJ..
Modelling: a core technique in anaesthesia and critical care research.
Br J Anaesth.
2006;
97
589-92
- 6
Rothen HU, Sporre B, Engberg G. et al. .
Prevention of atelectasis during general anaesthesia.
Lancet.
1995;
345
1387-91
- 7 Motoyama EK.. Respiratory physiology in infants and children. In: Motoyama EK, Davis
P.J., ed. SmithŽs Anesthesia for Infants and Children. 6th ed. St. Louis: Mosby 1996:
11
- 8
von Ungern-Sternberg BS, Frei FJ, Hammer J. et al. .
Impact of depth of propofol anaesthesia on functional residual capacity and ventilation
distribution in healthy preschool children.
Br J Anaesth.
2007;
98
503-8
- 9
von Ungern-Sternberg BS, Regli A, Schibler A. et al. .
The impact of positive end-expiratory pressure on functional residual capacity and
ventilation homogeneity impairment in anesthetized children exposed to high levels
of inspired oxygen.
Anesth Analg.
2007;
104
- 10
von Ungern-Sternberg BS, Regli A, Frei FJ. et al. .
The effect of caudal block on functional residual capacity and ventilation homogeneity
in healthy children.
Anaesthesia.
2006;
61
758-63
- 11
Thorsteinsson A, Werner O, Jonmarker C, Larsson A..
Airway closure in anesthetized infants and children: influence of inspiratory pressures
and volumes.
Acta Anaesthesiol Scand.
2002;
46
529-36
- 12
Evans RG, Crawford MW, Noseworthy MD, Yoo SJ..
Effect of increasing depth of propofol anesthesia on upper airway configuration in
children.
Anesthesiology.
2003;
99
596-602
- 13
Litman RS, Wake N, Chan LM. et al. .
Effect of lateral positioning on upper airway size and morphology in sedated children.
Anesthesiology.
2005;
103
484-8
- 14
Arai YC, Fukunaga K, Hirota S, Fujimoto S..
The effects of chin lift and jaw thrust while in the lateral position on stridor score
in anesthetized children with adenotonsillar hypertrophy.
Anesth Analg.
2004;
99
1638-41
- 15
Arai YC, Fukunaga K, Ueda W. et al. .
The endoscopically measured effects of airway maneuvers and the lateral position on
airway patency in anesthetized children with adenotonsillar hypertrophy.
Anesth Analg.
2005;
100
949-52
- 16
Litman RS, McDonough JM, Marcus CL. et al. .
Upper airway collapsibility in anesthetized children.
Anesth Analg.
2006;
102
750-4
- 17
Keidan I, Fine GF, Kagawa T. et al. .
Work of breathing during spontaneous ventilation in anesthetized children: a comparative
study among the face mask, laryngeal mask airway and endotracheal tube.
Anesth Analg.
2000;
91
1381-8
- 18
Rowbottom SJ, Simpson DL, Grubb D..
The laryngeal mask airway in children. A fibreoptic assessment of positioning.
Anaesthesia.
1991;
46
489-91
- 19
Keidan I, Berkenstadt H, Segal E, Perel A..
Pressure versus volume-controlled ventilation with a laryngeal mask airway in paediatric
patients.
Paediatr Anaesth.
2001;
11
691-4
- 20
Goldman K..
Recent development in airway management of the paediatric patient.
Curr Opin Anaesthesiol.
2006;
19
278-84
- 21
Dullenkopf A, Gerber AC, Weiss M..
Fit and seal characteristics of a new paediatric tracheal tube with high volume-low
pressure polyurethane cuff.
Acta Anaesthesiol Scand.
2005;
49
232-7
- 22
Aasheim P, Fasting S, Mostad U, Aadahl P..
The reliability of endtidal CO2 in spontaneously breathing children during anaesthesia
with laryngeal mask airway, low flow, sevoflurane and caudal epidural.
Paediatr Anaesth.
2002;
12
438-41
- 23
Oberer C, von Ungern-Sternberg BS, Frei FJ, Erb TO..
Respiratory reflex responses of the larynx differ between sevoflurane and propofol
in pediatric patients.
Anesthesiology.
2005;
103
1142-8
- 24
Bhananker RC S., Posner K.. et al. .
Changing profile of anesthesia-related cardiac arrests in children: update from Pediatric
Perioperative Cardiac Arrest (POCA) Registry.
Anesthesiology.
2005;
103
- 25
Gulhas N, Durmus M, Demirbilek S. et al. .
The use of magnesium to prevent laryngospasm after tonsillectomy and adenoidectomy:
a preliminary study.
Paediatr Anaesth.
2003;
13
43-7
- 26
Larson CP, Jr..
Laryngospasm-the best treatment.
Anesthesiology.
1998;
89
1293-4
- 27
Batra YK, Ivanova M, Ali SS. et al. .
The efficacy of a subhypnotic dose of propofol in preventing laryngospasm following
tonsillectomy and adenoidectomy in children.
Paediatr Anaesth.
2005;
15
1094-7
- 28
Koc C, Kocaman F, Aygenc E. et al. .
The use of preoperative lidocaine to prevent stridor and laryngospasm after tonsillectomy
and adenoidectomy.
Otolaryngol Head Neck Surg.
1998;
118
880-2
- 29
Tsui BC, Wagner A, Cave D. et al. .
The incidence of laryngospasm with a "no touch" extubation technique after tonsillectomy
and adenoidectomy.
Anesth Analg.
2004;
98
327-9
- 30
Sibai AN, Yamout I..
Nitroglycerin relieves laryngospasm.
Acta Anaesthesiol Scand.
1999;
43
1081-3
- 31
Lee CK, Chien TJ, Hsu JC. et al. .
The effect of acupuncture on the incidence of postextubation laryngospasm in children.
Anaesthesia.
1998;
53
917-20
Dr. med. Alexander Reich
Email: reich@anit.uni-muenster.de