Subscribe to RSS
DOI: 10.1055/s-2007-984533
Palladium-Catalyzed Copper-Free Sonogashira Coupling Reaction in Water and Acetone
Publication History
Publication Date:
27 June 2007 (online)

Abstract
An efficient palladium-catalyzed copper-free Sonogashira reaction in water and acetone has been developed under mild conditions. The results showed that the aryl iodides could carry out the cross-coupling reaction with a variety of terminal alkynes in high yields in water-acetone in the absence of amine, copper(I) salts, or phosphine ligands at 60 °C for one hour, and good yields were obtained for aryl bromides at 60 °C for 12-24 hours in the presence of triphenylphosphine and piperidine. The method could be used to synthesize polyethynyl aromatic compounds in a one-pot reaction.
Key words
copper-free - palladium-catalyzed - Sonogashira coupling - aqueous
- 1a
Viehe HG. Chemistry of Acetylene Marcel Dekker; New York: 1969. p.597 - 1b
Bohlmann F.Burkhart FT.Zero C. Naturally Occurring Acetylenes Academic Press; London / New York: 1973. - 1c
Sonogashira K. In Comprehensive Organic Synthesis Vol. 3:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.551 - 1d
Diederich F.Stang PJ. Metal-Catalyzed Cross-Coupling Reactions Wiley-VCH; Weinheim: 1998. - 1e
Miyaura N. Cross-Coupling Reaction Springer; Berlin: 2002. - 2a
Alonso F.Beletskaya IP.Yus M. Chem. Rev. 2004, 104: 3079 - 2b
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176 - 2c
Tykwinski RR. Angew. Chem. Int. Ed. 2003, 42: 1566 - 3a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 44: 4467 - 3b
Dieck HA.Heck RF. J. Organomet. Chem. 1975, 93: 259 - 3c
Cassar L. J. Organomet. Chem. 1975, 93: 253 - 4a
Thorand S.Krause N. J. Org. Chem. 1998, 63: 8551 - 4b
Chow H.-F.Wan C.-W.Low K.-H.Yeung Y.-Y. J. Org. Chem. 2001, 66: 1910 - 4c
Batey RA.Shen M.Lough AJ. Org. Lett. 2002, 4: 1411 - 4d
Eckhardt M.Fu GC. J. Am. Chem. Soc. 2003, 125: 13642 - 4e
Novak Z.Szabo A.Repasi J.Kotschy A. J. Org. Chem. 2003, 68: 3327 - 4f
Garcia D.Cuadro AM.Alvarez-Builla J.Vaquero JJ. Org. Lett. 2004, 6: 4175 - 4g
Kollhofer A.Plenio H. Adv. Synth. Catal. 2005, 347: 1295 - 4h
Posset T.Blumel J. J. Am. Chem. Soc. 2006, 128: 8394 - 5
Siemsen P.Livingston RC.Diederich F. Angew. Chem. Int. Ed. 2000, 39: 2632 - 6a
Leadbeater NE.Tominack BJ. Tetrahedron Lett. 2003, 44: 8653 - 6b
Urgaonkar S.Verkade JG. J. Org. Chem. 2004, 69: 5752 - 6c
Li J.-H.Liang Y.Xie Y.-X. J. Org. Chem. 2005, 70: 4393 - 6d
Li J.-H.Zhang X.-D.Xie Y.-X. Synthesis 2005, 804 - 6e
Liang Y.Xie Y.-X.Li J.-H. J. Org. Chem. 2006, 71: 379 - 7a
Alonso DA.Najera C.Pacheco MC. Tetrahedron Lett. 2002, 43: 9365 - 7b
Najera C.Gil-Molto J.Karlstrom S.Falvello LR. Org. Lett. 2003, 5: 1451 - 7c
Méry D.Heuzé K.Astruc D. Chem. Commun. 2003, 1934 - 7d
Heuze K.Mery D.Gauss D.Astruc D. Chem. Commun. 2003, 2274 - 7e
Arques A.Auñon D.Molina P. Tetrahedron Lett. 2004, 45: 4337 - 7f
Alonso DA.Botella L.Najera C.Pacheco MC. Synthesis 2004, 1713 - 7g
Heuze K.Mery D.Gauss D.Blais JC.Astruc D. Chem. Eur. J. 2004, 10: 3936 - 8a
Mori A.Kawashima J.Shimada T.Suguro M. Org. Lett. 2000, 2: 2935 - 8b
Eberhard MR.Wang Z.Jensen CM. Chem. Commun. 2002, 818 - 8c
Sakai N.Annaka K.Konakahara T. Org. Lett. 2004, 6: 1527 - 9a
Fukuyama T.Shinmen M.Nishitani S.Sato M.Ryu I. Org. Lett. 2002, 4: 1691 - 9b
Park SB.Alper H. Chem. Commun. 2004, 1306 - 9c
Gholap AR.Venkatesan K.Pasricha R.Daniel T.Lahoti RJ.Srinivasan KV. J. Org. Chem. 2005, 70: 4869 - 10a
Djakovitch L.Rollet P. Adv. Synth. Catal. 2004, 346: 1782 - 10b
Rollet P.Kleist W.Dufaud V.Djakovitch L. J. Mol. Catal. A: Chem. 2005, 241: 39 - 10c
Li P.Wang L. Adv. Synth. Catal. 2006, 348: 681 - 10d
Elizabeth T.Ali A.Julien M. Synlett 2005, 487 - 10e
Cwik A.Hell Z.Figueras F. Tetrahedron Lett. 2006, 47: 3023 - 11a
Böhm VPW.Herrmann WA. Eur. J. Org. Chem. 2000, 3679 - 11b
Kollhofer A.Pullmann T.Plenio H. Angew. Chem. Int. Ed. 2003, 42: 1056 - 11c
Gelman D.Buchwald SL. Angew. Chem. Int. Ed. 2003, 42: 5993 - 11d
Soheili A.Albaneze-Walker J.Murry JA.Dormer PG.Hughes DL. Org. Lett. 2003, 5: 4191 - 11e
Ma Y.Song C.Jiang W.Wu Q.Wang Y.Liu X.Andrus MB. Org. Lett. 2003, 5: 3317 - 11f
Cheng J.Sun Y.Wang F.Guo M.Xu J.-H.Pan Y.Zhang Z. J. Org. Chem. 2004, 69: 5428 - 12a
Li C.-J.Chan T.-H. Organic Reactions in Aqueous Media Wiley; New York: 1997. - 12b
Organic Synthesis in Water
Grieco PA. Academic Press; Dordrecht: 1997. - 12c
Aqueous-Phase Organometallic Catalysis
2nd ed:
Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 2004. - 12d
Leadbeater NE. Chem. Commun. 2005, 2881 - 12e
Li C.-J. Chem. Rev. 2005, 105: 3095 - 13a
Casalnuovo AL.Calabrese JC. J. Am. Chem. Soc. 1990, 112: 4324 - 13b
Dibowski H.Schmidtchen FP. Tetrahedron Lett. 1998, 39: 525 - 13c
Novak Z.Szabo A.Repasi J.Kotschy A. J. Org. Chem. 2003, 68: 3327 - 13d
Djakovitch L.Rollet P. Tetrahedron Lett. 2004, 45: 1367 - 13e
Bhattacharyaa S.Sengupta S. Tetrahedron Lett. 2004, 45: 8733 - 13f
Wolf C.Lerebours R. Org. Biomol. Chem. 2004, 2: 2161 - 13g
Gelman D.Buchwald SL. Angew. Chem. Int. Ed. 2005, 44: 6173 - 13h
Liang B.Dai M.Chen J.Yang Z. J. Org. Chem. 2005, 70: 391 - 13i
Zhang G. Synlett 2005, 619 - 14a
Liu L.Zhang Y.Wang Y. J. Org. Chem. 2005, 70: 6122 - 14b
Liu L.Zhang Y.Xin B. J. Org. Chem. 2006, 71: 3994 - 14c
Xin B.Zhang Y.Liu L.Wang Y. Synlett 2005, 3083 - 14d
Xin B.Zhang Y.Cheng K. J. Org. Chem. 2006, 71: 5725 - 17a
Yamaguchi Y.Kobayashi S.Miyamura S.Okamoto Y.Wakamiya T.Matsubara Y.Yoshida Z. Angew. Chem. Int. Ed. 2004, 43: 366 - 17b
Yamaguchi Y.Ochi T.Miyamura S.Tanaka T.Kobayashi S.Wakamiya T.Matsubara Y.Yoshida Z.-I. J. Am. Chem. Soc. 2006, 128: 4504
References and Notes
General Procedure for the Sonogashira Reaction of Aryl Iodides
A mixture of NaOH (0.08 g, 2 mmol), Pd(OAc)2 (2 mg, 1 mol%), distilled H2O (3 g), and acetone (3 g, 3.8 mL) was stirred for 5 min. Then, aryl iodides (1 mmol)
and terminal alkynes (1.2 mmol) were introduced and the mixture of the reaction was
heated to 60 °C for 1 h. Afterward, the reaction solution was cooled to r.t. and extracted
four times with Et2O (4 × 10 mL). The combined organic phase was analyzed by GC and GC-MS. Further purification
of the product was achieved by flash chromatography on a silica gel column.
1-(2-Phenylethynyl)naphthalene (Table
[2]
, entry 6): 1H NMR (500 MHz, CDCl3, TMS): δ = 8.43-8.45 (d, 1 H, J = 8.35 Hz), 7.72-7.80 (m, 3 H), 7.61-7.63 (m, 2 H), 7.55 (m, 1 H), 7.46-7.48 (m,
1 H), 7.33-7.38 (m, 1 H), 7.30-7.32 (m, 3 H). MS (EI): m/z (%) = 229 (20) [M+ + 1], 228 (100) [M+], 226 (43).
General Procedure for the Sonogashira Reaction of Aryl Bromides and Polyhaloaryls
A mixture of piperidine (0.17 g, 2 mmol; for dihalides, 4 mmol; for trihalides, 6
mmol; for tetrahalides, 8 mmol), PdCl2 (11 mg, 5 mol%; for dihalides, PdCl2 = 10 mol%; for trihalides, PdCl2 = 15 mol%; for tetrahalides, PdCl2 = 20 mol%), PPh3 (26 mg, 10 mol%; for dihalides, PPh3 = 20 mol%; for trihalides, PPh3 = 30 mol%; for tetrahalides, PPh3 = 40 mol%), distilled H2O (3 g), and acetone (3 g, 3.8 mL) was stirred for 5 min under nitrogen. Then, aryl
bromides or polyhaloaryls (1 mmol) and terminal alkynes (1.2 mmol; for dihalides,
alkynes = 2.4 mmol; for trihalides, alkynes = 3.6 mmol; for tetrahalides, alkynes
= 4.8 mmol) were introduced and the mixture of the reaction was heated to 60 °C for
the indicated time under nitrogen. Afterwards, the reaction solution was cooled to
r.t. and extracted with Et2O (4 × 10 mL). The combined organic phase was analyzed by GC and GC-MS. Further purification
of the product was achieved by flash chromatography on a silica gel column.
1,4-Bis(2-phenylethynyl)benzene (Table
[4]
, entry 1): 1H NMR (500 MHz, CDCl3, TMS): δ = 7.52-7.54 (m, 4 H), 7.50 (s, 4 H), 7.34-7.36 (m, 6 H). MS (EI): m/z (%) = 279 (25) [M+ + 1], 278 (100) [M+], 139 (10).