References and Notes
<A NAME="RW07307ST-1A">1a</A>
Viehe HG.
Chemistry of Acetylene
Marcel Dekker;
New York:
1969.
p.597
<A NAME="RW07307ST-1B">1b</A>
Bohlmann F.
Burkhart FT.
Zero C.
Naturally Occurring Acetylenes
Academic Press;
London / New York:
1973.
<A NAME="RW07307ST-1C">1c</A>
Sonogashira K. In Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.551
<A NAME="RW07307ST-1D">1d</A>
Diederich F.
Stang PJ.
Metal-Catalyzed Cross-Coupling Reactions
Wiley-VCH;
Weinheim:
1998.
<A NAME="RW07307ST-1E">1e</A>
Miyaura N.
Cross-Coupling Reaction
Springer;
Berlin:
2002.
<A NAME="RW07307ST-2A">2a</A>
Alonso F.
Beletskaya IP.
Yus M.
Chem. Rev.
2004,
104:
3079
<A NAME="RW07307ST-2B">2b</A>
Littke AF.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
4176
<A NAME="RW07307ST-2C">2c</A>
Tykwinski RR.
Angew. Chem. Int. Ed.
2003,
42:
1566
<A NAME="RW07307ST-3A">3a</A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
44:
4467
<A NAME="RW07307ST-3B">3b</A>
Dieck HA.
Heck RF.
J. Organomet. Chem.
1975,
93:
259
<A NAME="RW07307ST-3C">3c</A>
Cassar L.
J. Organomet. Chem.
1975,
93:
253
<A NAME="RW07307ST-4A">4a</A>
Thorand S.
Krause N.
J. Org. Chem.
1998,
63:
8551
<A NAME="RW07307ST-4B">4b</A>
Chow H.-F.
Wan C.-W.
Low K.-H.
Yeung Y.-Y.
J. Org. Chem.
2001,
66:
1910
<A NAME="RW07307ST-4C">4c</A>
Batey RA.
Shen M.
Lough AJ.
Org. Lett.
2002,
4:
1411
<A NAME="RW07307ST-4D">4d</A>
Eckhardt M.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
13642
<A NAME="RW07307ST-4E">4e</A>
Novak Z.
Szabo A.
Repasi J.
Kotschy A.
J. Org. Chem.
2003,
68:
3327
<A NAME="RW07307ST-4F">4f</A>
Garcia D.
Cuadro AM.
Alvarez-Builla J.
Vaquero JJ.
Org. Lett.
2004,
6:
4175
<A NAME="RW07307ST-4G">4g</A>
Kollhofer A.
Plenio H.
Adv. Synth. Catal.
2005,
347:
1295
<A NAME="RW07307ST-4H">4h</A>
Posset T.
Blumel J.
J. Am. Chem. Soc.
2006,
128:
8394
<A NAME="RW07307ST-5">5</A>
Siemsen P.
Livingston RC.
Diederich F.
Angew. Chem. Int. Ed.
2000,
39:
2632
<A NAME="RW07307ST-6A">6a</A>
Leadbeater NE.
Tominack BJ.
Tetrahedron Lett.
2003,
44:
8653
<A NAME="RW07307ST-6B">6b</A>
Urgaonkar S.
Verkade JG.
J. Org. Chem.
2004,
69:
5752
<A NAME="RW07307ST-6C">6c</A>
Li J.-H.
Liang Y.
Xie Y.-X.
J. Org. Chem.
2005,
70:
4393
<A NAME="RW07307ST-6D">6d</A>
Li J.-H.
Zhang X.-D.
Xie Y.-X.
Synthesis
2005,
804
<A NAME="RW07307ST-6E">6e</A>
Liang Y.
Xie Y.-X.
Li J.-H.
J. Org. Chem.
2006,
71:
379
<A NAME="RW07307ST-7A">7a</A>
Alonso DA.
Najera C.
Pacheco MC.
Tetrahedron Lett.
2002,
43:
9365
<A NAME="RW07307ST-7B">7b</A>
Najera C.
Gil-Molto J.
Karlstrom S.
Falvello LR.
Org. Lett.
2003,
5:
1451
<A NAME="RW07307ST-7C">7c</A>
Méry D.
Heuzé K.
Astruc D.
Chem. Commun.
2003,
1934
<A NAME="RW07307ST-7D">7d</A>
Heuze K.
Mery D.
Gauss D.
Astruc D.
Chem. Commun.
2003,
2274
<A NAME="RW07307ST-7E">7e</A>
Arques A.
Auñon D.
Molina P.
Tetrahedron Lett.
2004,
45:
4337
<A NAME="RW07307ST-7F">7f</A>
Alonso DA.
Botella L.
Najera C.
Pacheco MC.
Synthesis
2004,
1713
<A NAME="RW07307ST-7G">7g</A>
Heuze K.
Mery D.
Gauss D.
Blais JC.
Astruc D.
Chem. Eur. J.
2004,
10:
3936
<A NAME="RW07307ST-8A">8a</A>
Mori A.
Kawashima J.
Shimada T.
Suguro M.
Org. Lett.
2000,
2:
2935
<A NAME="RW07307ST-8B">8b</A>
Eberhard MR.
Wang Z.
Jensen CM.
Chem. Commun.
2002,
818
<A NAME="RW07307ST-8C">8c</A>
Sakai N.
Annaka K.
Konakahara T.
Org. Lett.
2004,
6:
1527
<A NAME="RW07307ST-9A">9a</A>
Fukuyama T.
Shinmen M.
Nishitani S.
Sato M.
Ryu I.
Org. Lett.
2002,
4:
1691
<A NAME="RW07307ST-9B">9b</A>
Park SB.
Alper H.
Chem. Commun.
2004,
1306
<A NAME="RW07307ST-9C">9c</A>
Gholap AR.
Venkatesan K.
Pasricha R.
Daniel T.
Lahoti RJ.
Srinivasan KV.
J. Org. Chem.
2005,
70:
4869
<A NAME="RW07307ST-10A">10a</A>
Djakovitch L.
Rollet P.
Adv. Synth. Catal.
2004,
346:
1782
<A NAME="RW07307ST-10B">10b</A>
Rollet P.
Kleist W.
Dufaud V.
Djakovitch L.
J. Mol. Catal. A: Chem.
2005,
241:
39
<A NAME="RW07307ST-10C">10c</A>
Li P.
Wang L.
Adv. Synth. Catal.
2006,
348:
681
<A NAME="RW07307ST-10D">10d</A>
Elizabeth T.
Ali A.
Julien M.
Synlett
2005,
487
<A NAME="RW07307ST-10E">10e</A>
Cwik A.
Hell Z.
Figueras F.
Tetrahedron Lett.
2006,
47:
3023
<A NAME="RW07307ST-11A">11a</A>
Böhm VPW.
Herrmann WA.
Eur. J. Org. Chem.
2000,
3679
<A NAME="RW07307ST-11B">11b</A>
Kollhofer A.
Pullmann T.
Plenio H.
Angew. Chem. Int. Ed.
2003,
42:
1056
<A NAME="RW07307ST-11C">11c</A>
Gelman D.
Buchwald SL.
Angew. Chem. Int. Ed.
2003,
42:
5993
<A NAME="RW07307ST-11D">11d</A>
Soheili A.
Albaneze-Walker J.
Murry JA.
Dormer PG.
Hughes DL.
Org. Lett.
2003,
5:
4191
<A NAME="RW07307ST-11E">11e</A>
Ma Y.
Song C.
Jiang W.
Wu Q.
Wang Y.
Liu X.
Andrus MB.
Org. Lett.
2003,
5:
3317
<A NAME="RW07307ST-11F">11f</A>
Cheng J.
Sun Y.
Wang F.
Guo M.
Xu J.-H.
Pan Y.
Zhang Z.
J. Org. Chem.
2004,
69:
5428
<A NAME="RW07307ST-12A">12a</A>
Li C.-J.
Chan T.-H.
Organic Reactions in Aqueous Media
Wiley;
New York:
1997.
<A NAME="RW07307ST-12B">12b</A>
Organic Synthesis in Water
Grieco PA.
Academic Press;
Dordrecht:
1997.
<A NAME="RW07307ST-12C">12c</A>
Aqueous-Phase Organometallic Catalysis
2nd ed:
Cornils B.
Herrmann WA.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RW07307ST-12D">12d</A>
Leadbeater NE.
Chem. Commun.
2005,
2881
<A NAME="RW07307ST-12E">12e</A>
Li C.-J.
Chem. Rev.
2005,
105:
3095
<A NAME="RW07307ST-13A">13a</A>
Casalnuovo AL.
Calabrese JC.
J. Am. Chem. Soc.
1990,
112:
4324
<A NAME="RW07307ST-13B">13b</A>
Dibowski H.
Schmidtchen FP.
Tetrahedron Lett.
1998,
39:
525
<A NAME="RW07307ST-13C">13c</A>
Novak Z.
Szabo A.
Repasi J.
Kotschy A.
J. Org. Chem.
2003,
68:
3327
<A NAME="RW07307ST-13D">13d</A>
Djakovitch L.
Rollet P.
Tetrahedron Lett.
2004,
45:
1367
<A NAME="RW07307ST-13E">13e</A>
Bhattacharyaa S.
Sengupta S.
Tetrahedron Lett.
2004,
45:
8733
<A NAME="RW07307ST-13F">13f</A>
Wolf C.
Lerebours R.
Org. Biomol. Chem.
2004,
2:
2161
<A NAME="RW07307ST-13G">13g</A>
Gelman D.
Buchwald SL.
Angew. Chem. Int. Ed.
2005,
44:
6173
<A NAME="RW07307ST-13H">13h</A>
Liang B.
Dai M.
Chen J.
Yang Z.
J. Org. Chem.
2005,
70:
391
<A NAME="RW07307ST-13I">13i</A>
Zhang G.
Synlett
2005,
619
<A NAME="RW07307ST-14A">14a</A>
Liu L.
Zhang Y.
Wang Y.
J. Org. Chem.
2005,
70:
6122
<A NAME="RW07307ST-14B">14b</A>
Liu L.
Zhang Y.
Xin B.
J. Org. Chem.
2006,
71:
3994
<A NAME="RW07307ST-14C">14c</A>
Xin B.
Zhang Y.
Liu L.
Wang Y.
Synlett
2005,
3083
<A NAME="RW07307ST-14D">14d</A>
Xin B.
Zhang Y.
Cheng K.
J. Org. Chem.
2006,
71:
5725
<A NAME="RW07307ST-15">15</A>
General Procedure for the Sonogashira Reaction of Aryl Iodides
A mixture of NaOH (0.08 g, 2 mmol), Pd(OAc)2 (2 mg, 1 mol%), distilled H2O (3 g), and acetone (3 g, 3.8 mL) was stirred for 5 min. Then, aryl iodides (1 mmol)
and terminal alkynes (1.2 mmol) were introduced and the mixture of the reaction was
heated to 60 °C for 1 h. Afterward, the reaction solution was cooled to r.t. and extracted
four times with Et2O (4 × 10 mL). The combined organic phase was analyzed by GC and GC-MS. Further purification
of the product was achieved by flash chromatography on a silica gel column.
1-(2-Phenylethynyl)naphthalene (Table
[2]
, entry 6): 1H NMR (500 MHz, CDCl3, TMS): δ = 8.43-8.45 (d, 1 H, J = 8.35 Hz), 7.72-7.80 (m, 3 H), 7.61-7.63 (m, 2 H), 7.55 (m, 1 H), 7.46-7.48 (m,
1 H), 7.33-7.38 (m, 1 H), 7.30-7.32 (m, 3 H). MS (EI): m/z (%) = 229 (20) [M+ + 1], 228 (100) [M+], 226 (43).
<A NAME="RW07307ST-16">16</A>
General Procedure for the Sonogashira Reaction of Aryl Bromides and Polyhaloaryls
A mixture of piperidine (0.17 g, 2 mmol; for dihalides, 4 mmol; for trihalides, 6
mmol; for tetrahalides, 8 mmol), PdCl2 (11 mg, 5 mol%; for dihalides, PdCl2 = 10 mol%; for trihalides, PdCl2 = 15 mol%; for tetrahalides, PdCl2 = 20 mol%), PPh3 (26 mg, 10 mol%; for dihalides, PPh3 = 20 mol%; for trihalides, PPh3 = 30 mol%; for tetrahalides, PPh3 = 40 mol%), distilled H2O (3 g), and acetone (3 g, 3.8 mL) was stirred for 5 min under nitrogen. Then, aryl
bromides or polyhaloaryls (1 mmol) and terminal alkynes (1.2 mmol; for dihalides,
alkynes = 2.4 mmol; for trihalides, alkynes = 3.6 mmol; for tetrahalides, alkynes
= 4.8 mmol) were introduced and the mixture of the reaction was heated to 60 °C for
the indicated time under nitrogen. Afterwards, the reaction solution was cooled to
r.t. and extracted with Et2O (4 × 10 mL). The combined organic phase was analyzed by GC and GC-MS. Further purification
of the product was achieved by flash chromatography on a silica gel column.
1,4-Bis(2-phenylethynyl)benzene (Table
[4]
, entry 1): 1H NMR (500 MHz, CDCl3, TMS): δ = 7.52-7.54 (m, 4 H), 7.50 (s, 4 H), 7.34-7.36 (m, 6 H). MS (EI): m/z (%) = 279 (25) [M+ + 1], 278 (100) [M+], 139 (10).
<A NAME="RW07307ST-17A">17a</A>
Yamaguchi Y.
Kobayashi S.
Miyamura S.
Okamoto Y.
Wakamiya T.
Matsubara Y.
Yoshida Z.
Angew. Chem. Int. Ed.
2004,
43:
366
<A NAME="RW07307ST-17B">17b</A>
Yamaguchi Y.
Ochi T.
Miyamura S.
Tanaka T.
Kobayashi S.
Wakamiya T.
Matsubara Y.
Yoshida Z.-I.
J. Am. Chem. Soc.
2006,
128:
4504