Subscribe to RSS
DOI: 10.1055/s-2007-980144
Die funktionelle Organisation des frontalen Kortex
Teil 1: Grundlegende Erkenntnisse aus den Systemischen NeurowissenschaftenFunctional Organisation of Frontal CortexPart 1: Elementary Findings in Systemic NeurosciencePublication History
Publication Date:
14 January 2008 (online)

Lernziele
Die Erforschung der Ursachen neuropsychiatrischer Störungsbilder setzt ein weitreichendes Verständnis der normalen Funktionsweise des menschlichen Gehirns voraus. Da vor allem viele psychiatrische Störungsbilder speziell mit Dysfunktionen des Frontalhirns in Verbindung gebracht werden, beschäftigt sich dieser Übersichtsartikel mit der funktionellen Organisation des frontalen Kortex beim gesunden Menschen und bei nichtmenschlichen Primaten. Dabei wird, ausgehend von der traditionellen Untergliederung des Frontalhirns in einen lateralen frontodorsalen, einen frontoorbitalen und einen frontomedialen Anteil, eine umfassende Übersicht über den aktuellen Forschungsstand zur funktionellen Segregation frontaler Kortizes gegeben, wobei insbesondere Ergebnisse aus modernen neurophysiologischen und hirnbildgebenden Studien Berücksichtigung finden. Ferner werden hierbei einige allgemeine Funktionsprinzipien des Frontalhirns herausgearbeitet. Dementsprechend sollen in diesem Beitrag verschiedene Fortbildungsziele vermittelt werden:
Allgemeine funktionelle Unterteilung des Stirnhirns Neurophysiologische Funktionsprinzipien des Frontalhirns nichtmenschlicher Primaten Hirnbildgebende Befunde und die Funktionalität des lateralen Frontalhirns Hirnbildgebende Befunde und die Funktionalität des medialen Frontalhirns Hirnbildgebende Befunde und die Funktionalität des orbitalen Frontalhirns
Literatur
- 1 Fuster J M. The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe. New York: Raven Press 1989
MissingFormLabel
- 2
Freedman D J, Riesenhuber M, Poggio T, Miller E K.
Visual categorization and the primate prefrontal cortex: neurophysiology and behavior.
J Neurophysiol.
2002;
88
929-941
MissingFormLabel
- 3
Wallis J D, Anderson K C, Miller E K.
Single neurons in prefrontal cortex encode abstract rules.
Nature.
2001;
411
953-956
MissingFormLabel
- 4
Watanabe M, Hikosaka K, Sakagami M, Shirakawa S.
Coding and monitoring of motivational context in the primate prefrontal cortex.
J Neurosci.
2002;
22
2391-2400
MissingFormLabel
- 5
Groenewegen H J, Uylings H B.
The prefrontal cortex and the integration of sensory, limbic and autonomic information.
Prog Brain Res.
2000;
126
3-28
MissingFormLabel
- 6
Schoenbaum G, Setlow B.
Integrating orbitofrontal cortex into prefrontal theory: common processing themes
across species and subdivisions.
Learn Mem.
2001;
8
134-147
MissingFormLabel
- 7
Hikosaka K, Watanabe M.
Delay activity of orbital and lateral prefrontal neurons of the monkey varying with
different rewards.
Cereb Cortex.
2000;
10
263-271
MissingFormLabel
- 8
Hasegawa R P, Matsumoto M, Mikami A.
Search target selection in monkey prefrontal cortex.
J Neurophysiol.
2000;
84
1692-1696
MissingFormLabel
- 9 Arbib M A. Perceptual Structures and Distributed Motor Control. In: Brooks VB (ed). Handbook of Physiology; Nervous System, Vol. II. Bethesda: American Physiological Society 1981: 1448-1480
MissingFormLabel
- 10
Funahashi S, Bruce C J, Goldman-Rakic P S.
Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex.
J Neurophysiol.
1989;
61
331-349
MissingFormLabel
- 11
Constantinidis C, Williams G V, Goldman-Rakic P S.
A role for inhibition in shaping the temporal flow of information in prefrontal cortex.
Nat Neurosci.
2002;
5
175-180
MissingFormLabel
- 12
Goldman-Rakic P S.
The prefrontal landscape: Implications of functional architecture for understanding
human mentation and the central executive.
Philos Trans R Soc Lond B Biol Sci.
1996;
351
1445-1453
MissingFormLabel
- 13
Wilson F AW, Scalaidhe S PO, Goldman-Rakic P S.
Dissociation of object and spatial processing domains in the primate prefrontal cortex.
Science.
1993;
260
1955-1957
MissingFormLabel
- 14
Petrides M.
Specialized systems for the processing of mnemonic information in the primate prefrontal
cortex.
Philos Trans R Soc Lond B Biol Sci.
1996;
351
1455-1461
MissingFormLabel
- 15
Goodale M A, Milner A D.
Separate visual pathways for perception and action.
Trends Neurosci.
1992;
15
20-25
MissingFormLabel
- 16
Rainer G, Asaad W F, Miller E K.
Selective representation of relevant information by neurons in the primate prefrontal
cortex.
Nature.
1998;
393
577-579
MissingFormLabel
- 17
Nauta W JH.
The problem of the frontal lobe: a reinterpretation.
J Psychiatr Res.
1971;
8
167-187
MissingFormLabel
- 18
Duncan J.
An adaptive coding model of neural function in prefrontal cortex.
Nat Rev Neurosci.
2001;
2
820-829
MissingFormLabel
- 19 Baddeley A D, Hitch G J. Working Memory. In: Bower G (ed). Recent Advances in Learning and Motivation Vol. VIII. New York: Academic Press 1974: 47-90
MissingFormLabel
- 20
Gnadt J W, Andersen R A.
Memory-related motor planning activity in posterior parietal cortex of macaque.
Exp Brain Res.
1988;
70
216-220
MissingFormLabel
- 21
D'Esposito M, Postle B R, Ballard D, Lease J.
Maintenance versus manipulation of information held in working memory: an event-related
fMRI study.
Brain Cogn.
1999;
41
66-86
MissingFormLabel
- 22
Glahn D C, Kim J, Cohen M S. et al .
Maintenance and manipulation in spatial working memory: dissociations in the prefrontal
cortex.
Neuroimage.
2002;
17
201-213
MissingFormLabel
- 23
Duncan J, Owen A M.
Common regions of the human frontal lobe recruited by diverse cognitive demands.
Trends Cogn Sci.
2000;
23
475-483
MissingFormLabel
- 24
D'Esposito M, Postle B R, Rypma B.
Prefrontal cortical contributions to working memory: evidence from event-related fMRI
studies.
Exp Brain Res.
2000;
133
3-11
MissingFormLabel
- 25
Courtney S M, Petit L, Maisog J M, Ungerleider L G, Haxby J V.
An area specialized for spatial working memory in human frontal cortex.
Science.
1998;
279
1347-1351
MissingFormLabel
- 26
Nystrom L E, Braver T S, Sabb F W, Delgado M R, Noll D C, Cohen J D.
Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based
regional organization in human prefrontal cortex.
Neuroimage.
2000;
11
424-446
MissingFormLabel
- 27
Ungerleider L G, Courtney S M, Haxby J V.
A neural system for visual working memory.
Proc Natl Acad Sci USA.
1998;
95
883-890
MissingFormLabel
- 28
Gruber O.
Two different brain systems underlie phonological short-term memory in humans.
Neuroimage.
2000;
11
407
MissingFormLabel
- 29
Gruber O.
Effects of domain-specific interference on brain activation associated with verbal
working memory task performance.
Cereb Cortex.
2001;
11
1047-1055
MissingFormLabel
- 30
Gruber O, Cramon D Y von.
Domain-specific distribution of working memory processes along human prefrontal and
parietal cortices: a functional magnetic resonance imaging study.
Neurosci Lett.
2001;
297
29-32
MissingFormLabel
- 31
Gruber O, Cramon D Y von.
The functional neuroanatomy of human working memory revisited - evidence from 3T-fMRI
studies using classical domain-specific interference tasks.
Neuroimage.
2003;
19
797-809
MissingFormLabel
- 32
Romanski L M, Tian B, Fritz J, Mishkin M, Goldman-Rakic P S, Rauschecker J P.
Dual streams of auditory afferents target multiple domains in the primate prefrontal
cortex.
Nat Neurosci.
1999;
2
1131-1136
MissingFormLabel
- 33
Petrides M, Pandya D N.
Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human
and the macaque brain and corticocortical connection patterns.
Eur J Neurosci.
1999;
11
1011-1036
MissingFormLabel
- 34 Gruber O. The Co-Evolution of Language and Working Memory Capacity in the Human Brain. In: Stamenov M, Gallese V (eds). Mirror Neurons and the Evolution of Brain and Language.
Advances in Consciousness Research, 42 (Series B). Amsterdam & Philadelphia: John Benjamins 2002: 77-86
MissingFormLabel
- 35
Gruber O, Goschke T.
Executive control emerging from dynamic interactions between brain systems mediating
language, working memory and attentional processes.
Acta Psychologica.
2004;
115
105-121
MissingFormLabel
- 36
Botvinick M M, Braver T S, Carter C S, Barch D M, Cohen J C.
Conflict monitoring and cognitive control.
Psychol Rev.
2001;
108
624-652
MissingFormLabel
- 37
Ullsperger M, Cramon D Y von.
Error monitoring using external feedback: specific roles of the habenular complex,
the reward system, and the cingulate motor area revealed by functional magnetic resonance
imaging.
J Neurosci.
2003;
23
4308-4314
MissingFormLabel
- 38
Ridderinkhof K R, Ullsperger M, Crone E A, Nieuwenhuis S.
The role of the medial frontal cortex in cognitive control.
Science.
2004;
306
443-447
MissingFormLabel
- 39
Koski L, Paus T.
Functional connectivity of the anterior cingulate cortex within the human frontal
lobe: a brain-mapping meta-analysis.
Exp Brain Res.
2000;
133
5-65
MissingFormLabel
- 40
Matsumoto K, Tanaka K.
The role of the medial prefrontal cortex in achieving goals.
Curr Opin Neurobiol..
2004;
14
178-185
MissingFormLabel
- 41
Ferstl E C, Cramon D Y von.
What does the fronto-median cortex contribute to language processing: Coherence or
Theory of Mind?.
Neuroimage.
2002;
17
1599-1612
MissingFormLabel
- 42
Kringelbach M L, Rolls E T.
The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging
and neuropsychology.
Prog Neurobiol.
2004;
72
341-372
MissingFormLabel
- 43
Kringelbach M L.
The human orbitofrontal cortex: linking reward to hedonic experience.
Nat Rev Neurosci.
2005;
6
691-702
MissingFormLabel
- 44
Kringelbach M L, O'Doherty J, Rolls E T, Andrews C.
Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated
with its subjective pleasantness.
Cereb Cortex.
2003;
13
1064-1071
MissingFormLabel
- 45
Rolls E T.
The functions of the orbitofrontal cortex.
Brain Cogn.
2004;
55
11-29
MissingFormLabel
- 46
Rolls E T, Kringelbach M L, De Araujo I E.
Different representations of pleasant and unpleasant odours in the human brain.
Eur J Neurosci.
2003;
18
695-703
MissingFormLabel
- 47
O'Doherty J, Kringelbach M L, Rolls E T, Hornak J, Andrews C.
Abstract reward and punishment representations in the human orbitofrontal cortex.
Nat Neurosci.
2001;
4
95-102
MissingFormLabel
- 48
Elliott R, Frith C D, Dolan R J.
Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from
human neuroimaging studies.
Cereb Cortex.
2000;
10
308-317
MissingFormLabel
- 49
Krawczyk D C.
Contributions of the prefrontal cortex to the neural basis of human decision making.
Neurosci Biobehav Rev.
2002;
26
631-664
MissingFormLabel
- 50
O'Doherty J, Critchley H, Deichmann R, Dolan R J.
Dissociating valence of outcome from behavioral control in human orbital and ventral
prefrontal cortices.
J Neurosci.
2003;
23
931-7939
MissingFormLabel
Prof. Dr. Oliver Gruber
Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität
Von-Siebold-Str. 5
37075 Göttingen
Email: ogruber@gwdg.de