Pharmacopsychiatry 2007; 40(2): 64-67
DOI: 10.1055/s-2007-970144
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Regional Cerebral Glutamate Concentrations and Chronic Tobacco Consumption

J. Gallinat 1 , F. Schubert 2
  • 1Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin, Campus Mitte, Berlin, Germany
  • 2Physikalisch-Technische Bundesanstalt, Berlin, Germany
Further Information

Publication History

received 11. 10. 06 revised 05. 01. 07

accepted 12. 01. 07

Publication Date:
19 April 2007 (online)

Abstract

Introduction: Increasing evidence indicates a crucial role of glutamate in the brain reward system and nicotine addiction. Because the pertinent models involve frontal and hippocampal glutamatergic projections, our goal was to investigate cerebral glutamate concentrations in healthy subjects with different smoking behavior.

Methods: Glutamate was measured with proton magnetic resonance spectroscopy at 3 tesla in the left hippocampus and anterior cingulate cortex (ACC) in 13 chronic tobacco smokers, 9 former smokers, and 16 never-smokers using a dedicated quantification method.

Results: Glutamate concentrations did not differ between groups in either voxel (F=1.151, df=2, P=0.340). No significant correlations between glutamate concentrations and age of smoking onset, daily cigarette consumption, or lifetime exposure to tobacco smoke (pack-years) were observed.

Conclusion: Our findings do not support a crucial role of cingulate or hippocampal glutamate concentration in chronic tobacco consumption. Besides group differences potentially gone unnoticed due to the limited sample size, however, these results cannot rule out dysfunctional glutamatergic neurotransmission or glutamate dysfunctions in other brain regions of smokers.

References

  • 1 Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC. et al. . Differences between smokers and nonsmokers in regional gray matter volumes and densities.  Biol Psychiatry. 2004;  55 77-84
  • 2 Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex.  Neurosci Biobehav Rev. 2002;  26 321-352
  • 3 Carlezon WA, Wise RA. Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex.  J Neurosci. 1996;  16 3112-3122
  • 4 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S10-S14
  • 5 Cornish JL, Kalivas PW. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction.  J Neurosci. 2000;  20 RC89
  • 6 Domino EF, Minoshima S, Guthrie S, Ohl L, Ni L, Koeppe RA. et al. . Nicotine effects on regional cerebral blood flow in awake, resting tobacco smokers.  Synapse. 2000;  38 313-321
  • 7 Domino EF, Minoshima S, Guthrie SK, Ohl L, Ni L, Koeppe RA. et al. . Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.  Neuroscience. 2000;  101 277-282
  • 8 Ernst M, Heishman SJ, Spurgeon L, London ED. Smoking history and nicotine effects on cognitive performance.  Neuropsychopharmacology. 2001;  25 313-319
  • 9 Franklin TR, Druhan JP. Expression of Fos-related antigens in the nucleus accumbens and associated regions following exposure to a cocaine-paired environment.  Eur J Neurosci. 2000;  12 2097-2106
  • 10 Gallinat J, Kunz D, Lang UE, Kalus P, Juckel G, Eggers J. et al. . Serotonergic effects of smoking are independent from the human serotonin transporter gene promoter polymorphism: evidence from auditory cortical stimulus processing.  Pharmacopsychiatry. 2005;  38 158-160
  • 11 Gallinat J, Kunz D, Lang UE, Neu P, Kassim N, Kienast T. et al. . Association between cerebral glutamate and human behaviour: The sensation seeking personality trait.  Neuroimage. 2007;  34 671-678
  • 12 Gallinat J, Kunz D, Senkowski D, Kienast T, Seifert F, Schubert F. et al. . Hippocampal glutamate concentration predicts cerebral theta oscillations during cognitive processing.  Psychopharmacology. 2006;  187 103-111
  • 13 Gallinat J, Lang UE, Jacobsen LK, Bajbouj M, Kalus P, von_Haebler D. et al. . Abnormal hippocampal neurochemistry in smokers: Evidence from proton magnetic resonance spectroscopy at 3 tesla.  J Clin Psychopharmacol. 27 80-84
  • 14 Gallinat J, Meisenzahl EM, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T. et al. . Smoking and structural brain deficits: A volumetric MR investigation.  Eur J Neurosci. 2006;  24 1744-1750
  • 15 Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice.  Am J Psychiatry. 2005;  162 1403-1413
  • 16 Kashkin VA, DeWitte P. Nicotine increases microdialysate brain amino acid concentrations and induces conditioned place preference.  Eur Neuropsychopharmacol. 2005; 
  • 17 Lang UE, Hellweg R, Seifert F, Schubert F, Gallinat J. Correlation between serum BDNF level and an in vivo marker of cortical integrity.  Biol Psychiatry. , (in press) 2007; 
  • 18 Lawrence NS, Ross TJ, Stein EA. Cognitive mechanisms of nicotine on visual attention.  Neuron. 2002;  36 539-548
  • 19 Mason GF, Petrakis IL, de Graaf RA, Gueorguieva R, Guidone E, Coric V. et al. . Cortical gamma-aminobutyric acid levels and the recovery from ethanol dependence: preliminary evidence of modification by cigarette smoking.  Biol Psychiatry. 2006;  59 85-93
  • 20 McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior.  J Neurosci. 2003;  23 3531-3537
  • 21 Neuhaus A, Bajbouj M, Kienast T, Kalus P, vonHaebler D, Winterer G. et al. . Persistent dysfunctional frontal lobe activation in former smokers.  Psychopharmacology. 2006;  186 191-200
  • 22 Paterson NE, Semenova S, Gasparini F, Markou A. The mGluR5 antagonist MPEP decreased nicotine self-administration in rats and mice.  Psychopharmacology (Berl). 2003;  167 257-264
  • 23 Reid MS, Fox L, Ho LB, Berger SP. Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization.  Synapse. 2000;  35 129-136
  • 24 Rezvani AH, Levin ED. Cognitive effects of nicotine.  Biol Psychiatry. 2001;  49 258-267
  • 25 Schubert F, Gallinat J, Seifert F, Rinneberg H. Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla.  Neuroimage. 2004;  21 1762-1771
  • 26 Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL. Relapse to cocaine-seeking after hippocampal theta burst stimulation.  Science. 2001;  292 1175-1178
  • 27 Wexler BE, Gottschalk CH, Fulbright RK, Prohovnik I, Lacadie CM, Rounsaville BJ. et al. . Functional magnetic resonance imaging of cocaine craving.  Am J Psychiatry. 2001;  158 86-95
  • 28 Winterer G. Cortical microcircuits in schizophrenia - the dopamine hypothesis revisited.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S68-S71
  • 29 Zubieta JK, Heitzeg MM, Xu Y, Koeppe RA, Ni L, Guthrie S. et al. . Regional cerebral blood flow responses to smoking in tobacco smokers after overnight abstinence.  Am J Psychiatry. 2005;  162 567-577

Correspondence

Dr. F. Schubert

Physikalisch-Technische Bundesanstalt

Abbestr. 2-12

10587 Berlin

Germany

Phone: +00/49/30/3481 74 77

Fax: +00/49/30/3481 75 05

Email: florian.schubert@ptb.de

    >