Abstract
An improved copper catalyst system for the cyanation of heteroaryl halides leading
to substituted heteroaryl nitriles is described. The catalyst system consists of simple
CuI and N -alkylimidazoles, and mimics known Cu-containing metalloproteins. It is stable, commercially
available, cheap and easily tunable. By using inexpensive and non-toxic K4 [Fe(CN)6 ] and the novel Cu catalysts we were able to cyanate both activated and non-activated
heteroarenes with high yield and selectivity. The generality of the procedure is demonstrated
by a variety of different examples, some of which did not react under other known
methods.
Key words
copper - coupling - cyanation - heterocycles - nitriles
References and Notes
<A NAME="RG35706ST-1">1 </A>
Grundmann C. In
Houben-Weyl: Methoden der Organischen Chemie
4th ed., Vol. E5:
Falbe J.
Georg Thieme Verlag;
Stuttgart:
1985.
p.1313-1527
<A NAME="RG35706ST-2">2 </A>
Lindley J.
Tetrahedron
1984,
40:
1433
<A NAME="RG35706ST-3">3 </A>For a recent catalytic variant of the Sandmeyer reaction, see:
<A NAME="RG35706ST-3">3 </A>
Beletskaya IP.
Sigeev AS.
Peregudov AS.
Petrovskii PV.
J. Organomet. Chem.
2004.
689:
p.3810
<A NAME="RG35706ST-4A">4a </A>
Hagedorn F.
Gelbke H.-P. In Ullmanns Enzyklopädie der Technischen Chemie
4th ed., Vol. 17:
Bartholomé E.
Biekert E.
Hellmann H.
Ley H.
Weigert WM.
Weise E.
Verlag Chemie;
Weinheim:
1979.
p.333
<A NAME="RG35706ST-4B">4b </A>
Ellis GP.
Romney-Alexander TM.
Chem. Rev.
1987,
87:
779
<A NAME="RG35706ST-5">5 </A>
Sundermeier M.
Zapf A.
Beller M.
Eur. J. Inorg. Chem.
2003,
3513
<A NAME="RG35706ST-6">6 </A>
Sundermeier M.
Zapf A.
Beller M.
Sans J.
Tetrahedron Lett.
2001,
42:
6707
<A NAME="RG35706ST-7">7 </A>
Ramnauth J.
Bhardwaj N.
Renton P.
Rakhit S.
Maddaford SP.
Synlett
2003,
2237
<A NAME="RG35706ST-8">8 </A>
Sundermeier M.
Zapf A.
Beller M.
Angew. Chem. Int. Ed.
2003,
42:
1661
<A NAME="RG35706ST-9">9 </A>
Sundermeier M.
Mutyala S.
Zapf A.
Spannenberg A.
Beller M.
J. Organomet. Chem.
2003,
684:
50
<A NAME="RG35706ST-10">10 </A>
Chobanian HR.
Fors BP.
Lin LS.
Tetrahedron Lett.
2006,
47:
3303
Recent examples:
<A NAME="RG35706ST-11A">11a </A>
Jensen RS.
Gajare AS.
Toyota K.
Yoshifuji M.
Ozawa F.
Tetrahedron Lett.
2005,
46:
8645
<A NAME="RG35706ST-11B">11b </A>
Veauthier JM.
Carlson CN.
Collis GE.
Kiplinger JL.
John KD.
Synthesis
2005,
2683
<A NAME="RG35706ST-11C">11c </A>
Chidambaram R.
Tetrahedron Lett.
2004,
45:
1441
<A NAME="RG35706ST-12">12 </A>
Schareina T.
Zapf A.
Beller M.
Chem. Commun.
2004,
1388
<A NAME="RG35706ST-13">13 </A>
Schareina T.
Zapf A.
Beller M.
J. Organomet. Chem.
2004,
689:
4576
<A NAME="RG35706ST-14">14 </A>
Schareina T.
Zapf A.
Beller M.
Tetrahedron Lett.
2005,
46:
2585
<A NAME="RG35706ST-15A">15a </A>
Weissman SA.
Zewge D.
Chen C.
J. Org. Chem.
2005,
70:
1508
<A NAME="RG35706ST-15B">15b </A>
Grossman O.
Gelman D.
Org. Lett.
2006,
8:
1189
<A NAME="RG35706ST-16">16 </A>
Zanon J.
Klapars A.
Buchwald S.
J. Am. Chem. Soc.
2003,
125:
2890
<A NAME="RG35706ST-17">17 </A>
Cristau H.-J.
Ouali A.
Spindler J.-F.
Taillefer M.
Chem. Eur. J.
2005,
11:
2483
<A NAME="RG35706ST-18">18 </A>
Stetter J.
Lieb F.
Angew. Chem. Int. Ed.
2000,
39:
1724 ; Angew. Chem. 2000 , 112 , 1792
<A NAME="RG35706ST-19A">19a </A>
Fadda E.
Chakrabarti N.
Pomes R.
J. Phys. Chem. B
2005,
109:
22629
<A NAME="RG35706ST-19B">19b </A>
Syme CD.
Nadal RC.
Rigby SEJ.
Viles JH.
J. Biol. Chem.
2004,
279:
18169
<A NAME="RG35706ST-19C">19c </A>
Atwood CS.
Perry G.
Zeng H.
Kato Y.
Jones WD.
Ling KQ.
Huang XD.
Moir RD.
Wang DD.
Sayre LM.
Smith MA.
Chen SG.
Bush AI.
Biochemistry
2004,
43:
560
<A NAME="RG35706ST-19D">19d </A>
Nakamura M.
Nakajima T.
Ohba Y.
Yamauchi S.
Lee BR.
Ichishima E.
Biochem. J.
2000,
350:
537
<A NAME="RG35706ST-19E">19e </A>
Banci L.
Bertini I.
Ciofi-Baffoni S.
Katsari E.
Katsaros N.
Kubicek K.
Mangani S.
Proc. Natl. Acad. Sci. U.S.A.
2005,
102:
3994
<A NAME="RG35706ST-20">20 </A> For the application of 1-alkylimidazoles as solubilizing additives, see:
Welleman JA.
Hulsbergen FB.
Reedijk J.
Makromol. Chem.
1981,
182:
785
<A NAME="RG35706ST-21">21 </A>
Initial amination reactions of bromobenzenes in the presence of Cu/1-butylimidazole
showed that these catalysts are also active for other coupling reactions.
<A NAME="RG35706ST-22">22 </A>
All chemicals are commercially available and were used without further purification.
Products were fully characterized after isolation (NMR, IR, MS, EA) or in the case
of commercially available products by comparison of GCMS data.
General Procedure : First, K4 [Fe(CN)6 ]·3H2 O is ground to a fine powder and dried in vacuum (ca. 2 mbar) at 80 °C overnight.
Then, 0.4 mmol dry K4 [Fe(CN)6 ], 0.2 mmol copper precursor, the additive, and 2 mmol aryl halide are placed in a
pressure tube under argon. Afterwards, 200 µL tetradecane (internal standard for GC)
and 2 mL solvent are added. The pressure tube is sealed and heated for 16 h at the
temperature specified in Table
[1 ]
and Table
[2 ]
. After cooling to r.t., 3 mL CH2 Cl2 are added and the mixture is analyzed by GC. Conversion and yield are calculated
as an average of two parallel runs. For isolation of the products the reaction mixture
is washed with H2 O and the organic phase is dried over Na2 SO4 . After evaporation of the solvents the residue is subjected to column chromatography
(silica, hexane-EtOAc). All prepared nitriles are known compounds and identified by
comparison with commercially available materials.
Analytical data of 5-cyanopyrimidine : 1 H NMR (300 MHz, CDCl3 , 300 K): δ = 9.42 (s, 1 H), 9.04 (s, 2 H).
13 C NMR (75 MHz, CDCl3 , 300 K): δ = 160.5, 159.5, 114.0, 110.2.