Thorac Cardiovasc Surg 2007; 55(8): 473-480
DOI: 10.1055/s-2007-965631
Review

© Georg Thieme Verlag KG Stuttgart · New York

Inflammatory Response in On- Versus Off-Pump Myocardial Revascularization: Is ECC Really the Culprit?

J. Börgermann1 , R. J. Scheubel1 , A. Simm1 , R. E. Silber1 , I. Friedrich1
  • 1Department of Cardiac and Thoracic Surgery, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
Further Information

Publication History

received June 15, 2006

Publication Date:
19 November 2007 (online)

Abstract

A review of inflammatory mediators in on- versus off-pump surgery reveals that parameters of systemic inflammation differ quantitatively, not qualitatively between these approaches. Mediator system and cellular activation is observed after surgical trauma and following ischemia/reperfusion. Such activation is also modulated by genetic factors. The available literature does not permit definitive conclusions to be made on the advantages of off-pump surgery with respect to the systemic inflammatory response. The relationship between mediator systems and clinical course needs to be assessed in large patient populations to demonstrate to what extent off-pump surgery is more than just theoretically superior to on-pump surgery.

References

  • 1 Hall R I, Smith M S, Rocker G. The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations.  Anesth Analg. 1997;  85 766-782
  • 2 Wan S, LeClerc J L, Vincent J L. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies.  Chest. 1997;  112 676-692
  • 3 Chenoweth D E, Cooper S W, Hugli T E. et al . Complement activation during cardiopulmonary bypass: evidence for generation of C3a and C5a anaphylatoxins.  N Engl J Med. 1981;  304 497-503
  • 4 Bitkover C Y, Hansson L O, Valen G. et al . Effects of cardiac surgery on some clinically used inflammation markers and procalcitonin.  Scand Cardiovasc J. 2000;  34 307-314
  • 5 Fransen E, Maessen J, Dentener M. et al . Systemic inflammation present in patients undergoing CABG without extracorporeal circulation.  Chest. 1998;  113 1290-1295
  • 6 Kirklin J K, Westaby S, Blackstone E H. et al . Complement and the damaging effects of cardiopulmonary bypass.  J Thorac Cardiovasc Surg. 1983;  86 845-857
  • 7 Moore Jr F D, Warner K G, Assousa S. et al . The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin, and hemodilution.  Ann Surg. 1988;  208 95-103
  • 8 Seghaye M C, Duchateau J, Grabitz R G. et al . Complement activation during cardiopulmonary bypass in infants and children. Relation to postoperative multiple system organ failure.  J Thorac Cardiovasc Surg. 1993;  106 978-987
  • 9 Ascione R, Lloyd C T, Underwood M J. et al . Inflammatory response after coronary revascularization with or without cardiopulmonary bypass.  Ann Thorac Surg. 2000;  69 1198-1204
  • 10 Johansson-Synnergren M, Nilsson F, Bengtsson A. et al . Off-pump CABG reduces complement activation but does not significantly affect peripheral endothelial function: a prospective randomized study.  Scand Cardiovasc J. 2004;  38 53-58
  • 11 Wehlin L, Vedin J, Vaage J. et al . Activation of complement and leukocyte receptors during on- and off pump coronary artery bypass surgery.  Eur J Cardiothorac Surg. 2004;  25 35-42
  • 12 Struber M, Cremer J T, Gohrbandt B. et al . Human cytokine responses to coronary artery bypass grafting with and without cardiopulmonary bypass.  Ann Thorac Surg. 1999;  68 1330-1335
  • 13 Gu Y J, Mariani M A, Boonstra P W. et al . Complement activation in coronary artery bypass grafting patients without cardiopulmonary bypass: the role of tissue injury by surgical incision.  Chest. 1999;  116 892-898
  • 14 Dreyer W J, Michael L H, Millman E E. et al . Neutrophil activation and adhesion molecule expression in a canine model of open heart surgery with cardiopulmonary bypass.  Cardiovasc Res. 1995;  29 775-781
  • 15 Asimakopoulos G, Taylor K M. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules.  Ann Thorac Surg. 1998;  66 2135-2144
  • 16 Gillinov A M, Bator J M, Zehr K J. et al . Neutrophil adhesion molecule expression during cardiopulmonary bypass with bubble and membrane oxygenators.  Ann Thorac Surg. 1993;  56 847-853
  • 17 Ilton M K, Langton P E, Taylor M L. et al . Differential expression of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass.  J Thorac Cardiovasc Surg. 1999;  118 930-937
  • 18 Rinder C S, Bonan J L, Rinder H M. et al . Cardiopulmonary bypass induces leukocyte-platelet adhesion.  Blood. 1992;  79 1201-1205
  • 19 Gillinov A M, Redmond J M, Winkelstein J A. et al . Complement and neutrophil activation during cardiopulmonary bypass: a study in the complement-deficient dog.  Ann Thorac Surg. 1994;  57 345-352
  • 20 Gillinov A M, Redmond J M, Zehr K J. et al . Inhibition of neutrophil adhesion during cardiopulmonary bypass.  Ann Thorac Surg. 1994;  57 126-133
  • 21 Dreyer W J, Michael L H, Millman E E. et al . Neutrophil sequestration and pulmonary dysfunction in a canine model of open heart surgery with cardiopulmonary bypass. Evidence for a CD18-dependent mechanism.  Circulation. 1995;  92 2276-2283
  • 22 Kukielka G L, Youker K A, Hawkins H K. et al . Regulation of ICAM‐1 and IL‐6 in myocardial ischemia: effect of reperfusion.  Ann NY Acad Sci. 1994;  723 258-270
  • 23 Youker K A, Hawkins H K, Kukielka G L. et al . Molecular evidence for induction of intracellular adhesion molecule-1 in the viable border zone associated with ischemia-reperfusion injury of the dog heart.  Circulation. 1994;  89 2736-2746
  • 24 Brasil L A, Gomes W J, Salomao R. et al . Inflammatory response after myocardial revascularization with or without cardiopulmonary bypass.  Ann Thorac Surg. 1998;  66 56-59
  • 25 Diegeler A, Tarnok A, Rauch T. et al . Changes of leukocyte subsets in coronary artery bypass surgery: cardiopulmonary bypass versus ‘off-pump’ techniques.  Thorac Cardiovasc Surg. 1998;  46 327-332
  • 26 Matata B M, Sosnowski A W, Galinanes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation.  Ann Thorac Surg. 2000;  69 785-791
  • 27 Gu Y J, Mariani M A, van Oeveren W. et al . Reduction of the inflammatory response in patients undergoing minimally invasive coronary artery bypass grafting.  Ann Thorac Surg. 1998;  65 420-424
  • 28 Al-Ruzzeh S, Hoare G, Marczin N. et al . Off-pump coronary artery bypass surgery is associated with reduced neutrophil activation as measured by the expression of CD11b: a prospective randomized study.  Heart Surg Forum. 2003;  6 89-93
  • 29 Boldt J, Osmer C, Linke L C. et al . Circulating adhesion molecules in pediatric cardiac surgery.  Anesth Analg. 1995;  81 1129-1135
  • 30 Menasche P, Peynet J, Lariviere J. et al . Does normothermia during cardiopulmonary bypass increase neutrophil-endothelium interactions?.  Circulation. 1994;  90 II275-II279
  • 31 Wildhirt S M, Schulze C, Schulz C. et al . Reduction of systemic and cardiac adhesion molecule expression after off-pump versus conventional coronary artery bypass grafting.  Shock. 2001;  16 (Suppl 1) 55-59
  • 32 Wildhirt S M, Schulze C, Conrad N. et al . Reduced myocardial cellular damage and lipid peroxidation in off-pump versus conventional coronary artery bypass grafting.  Eur J Med Res. 2000;  5 222-228
  • 33 Markewitz A, Lante W, Franke A. et al . Alterations of cell-mediated immunity following cardiac operations: clinical implications and open questions.  Shock. 2001;  16 (Suppl 1) 10-15
  • 34 Nguyen D M, Mulder D S, Shennib H. Effect of cardiopulmonary bypass on circulating lymphocyte function.  Ann Thorac Surg. 1992;  53 611-616
  • 35 Naldini A, Borrelli E, Cesari S. et al . In vitro cytokine production and T-cell proliferation in patients undergoing cardiopulmonary by-pass.  Cytokine. 1995;  7 165-170
  • 36 Markewitz A, Faist E, Lang S. et al . Regulation of acute phase response after cardiopulmonary bypass by immunomodulation.  Ann Thorac Surg. 1993;  55 389-394
  • 37 Börgermann J, Friedrich I, Flohé S. et al . Tumor necrosis factor-alpha production in whole blood after cardiopulmonary bypass: downregulation caused by circulating cytokine-inhibitory activities.  J Thorac Cardiovasc Surg. 2002;  124 608-617
  • 38 Kleinschmidt S, Wanner G A, Bussmann D. et al . Proinflammatory cytokine gene expression in whole blood from patients undergoing coronary artery bypass surgery and its modulation by pentoxifylline.  Shock. 1998;  9 12-20
  • 39 Hiesmayr M J, Spittler A, Lassnigg A. et al . Alterations in the number of circulating leucocytes, phenotype of monocyte and cytokine production in patients undergoing cardiothoracic surgery.  Clin Exp Immunol. 1999;  115 315-323
  • 40 Rinder C S, Mathew J P, Rinder H M. et al . Lymphocyte and monocyte subset changes during cardiopulmonary bypass: effects of aging and gender.  J Lab Clin Med. 1997;  129 592-602
  • 41 Flohé S, Börgermann J, Dominguez F E. et al . Influence of granulocyte-macrophage colony-stimulating factor (GM‐CSF) on whole blood endotoxin responsiveness following trauma, cardiopulmonary bypass, and severe sepsis.  Shock. 1999;  12 17-24
  • 42 Dehoux M S, Hernot S, Asehnoune K. et al . Cardiopulmonary bypass decreases cytokine production in lipopolysaccharide-stimulated whole blood cells: roles of interleukin-10 and the extracorporeal circuit.  Crit Care Med. 2000;  28 1721-1727
  • 43 Strohmeyer J C, Blume C, Meisel C. et al . Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients.  Cytometry. 2003;  53 B 54-62
  • 44 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis.  Nat Med. 2000;  6 389-395
  • 45 Nissen N N, Polverini P J, Koch A E. et al . Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing.  Am J Pathol. 1998;  152 1445-1452
  • 46 Neufeld G, Cohen T, Gengrinovitch S. et al . Vascular endothelial growth factor (VEGF) and its receptors.  Faseb J. 1999;  13 9-22
  • 47 Asahara T, Masuda H, Takahashi T. et al . Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization.  Circ Res. 1999;  85 221-228
  • 48 Gill M, Dias S, Hattori K. et al . Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells.  Circ Res. 2001;  88 167-174
  • 49 Sinnaeve P, Chiche J D, Nong Z. et al . Soluble guanylate cyclase alpha(1) and beta(1) gene transfer increases NO responsiveness and reduces neointima formation after balloon injury in rats via antiproliferative and antimigratory effects.  Circ Res. 2001;  88 103-109
  • 50 Burton P B, Owen V J, Hafizi S. et al . Vascular endothelial growth factor release following coronary artery bypass surgery: extracorporeal circulation versus ‘beating heart’ surgery.  Eur Heart J. 2000;  21 1708-1713
  • 51 Scheubel R J, Zorn H, Silber R E. et al . Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting.  J Am Coll Cardiol. 2003;  42 2073-2080
  • 52 Diegeler A, Doll N, Rauch T. et al . Humoral immune response during coronary artery bypass grafting: a comparison of limited approach, “off-pump” technique, and conventional cardiopulmonary bypass.  Circulation. 2000;  102 III95-III100
  • 53 Schulze C, Conrad N, Schutz A. et al . Reduced expression of systemic proinflammatory cytokines after off-pump versus conventional coronary artery bypass grafting.  Thorac Cardiovasc Surg. 2000;  48 364-369
  • 54 Wan S, DeSmet J M, Barvais L. et al . Myocardium is a major source of proinflammatory cytokines in patients undergoing cardiopulmonary bypass.  J Thorac Cardiovasc Surg. 1996;  112 806-811
  • 55 Wan S, Izzat M B, Lee T W. et al . Avoiding cardiopulmonary bypass in multivessel CABG reduces cytokine response and myocardial injury.  Ann Thorac Surg. 1999;  68 52-56
  • 56 Gulielmos V, Menschikowski M, Dill H. et al . Interleukin-1, interleukin-6 and myocardial enzyme response after coronary artery bypass grafting - a prospective randomized comparison of the conventional and three minimally invasive surgical techniques.  Eur J Cardiothorac Surg. 2000;  18 594-601
  • 57 Kukielka G L, Smith C W, LaRosa G J. et al . Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo.  J Clin Invest. 1995;  95 89-103
  • 58 Burns S A, Newburger J W, Xiao M. et al . Induction of interleukin-8 messenger RNA in heart and skeletal muscle during pediatric cardiopulmonary bypass.  Circulation. 1995;  92 II315-II321
  • 59 Kawamura T, Wakusawa R, Okada K. et al . Elevation of cytokines during open heart surgery with cardiopulmonary bypass: participation of interleukin 8 and 6 in reperfusion injury.  Can J Anaesth. 1993;  40 1016-1021
  • 60 Randow F, Syrbe U, Meisel C. et al . Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta.  J Exp Med. 1995;  181 1887-1892
  • 61 de Waal Malefyt R, Abrams J, Bennett B. et al . Interleukin 10(IL‐10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL‐10 produced by monocytes.  J Exp Med. 1991;  174 1209-1220
  • 62 Yang Z, Zingarelli B, Szabo C. Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury.  Circulation. 2000;  101 1019-1026
  • 63 Seghaye M, Duchateau J, Bruniaux J. et al . Interleukin-10 release related to cardiopulmonary bypass in infants undergoing cardiac operations.  J Thorac Cardiovasc Surg. 1996;  111 545-553
  • 64 Wan S, LeClerc J L, Schmartz D. et al . Hepatic release of interleukin-10 during cardiopulmonary bypass in steroid-pretreated patients.  Am Heart J. 1997;  133 335-339
  • 65 Wan S, LeClerc J L, Vincent J L. Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation.  Ann Thorac Surg. 1997;  63 269-276
  • 66 Wan S, Marchant A, DeSmet J M. et al . Human cytokine responses to cardiac transplantation and coronary artery bypass grafting.  J Thorac Cardiovasc Surg. 1996;  111 469-477
  • 67 Tomic V, Russwurm S, Moller E. et al . Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting.  Circulation. 2005;  112 2912-2920
  • 68 Wan I Y, Arifi A A, Wan S. et al . Beating heart revascularization with or without cardiopulmonary bypass: evaluation of inflammatory response in a prospective randomized study.  J Thorac Cardiovasc Surg. 2004;  127 1624-1631
  • 69 Rastan A J, Bittner H B, Gummert J F. et al . On-pump beating heart versus off-pump coronary artery bypass surgery-evidence of pump-induced myocardial injury.  Eur J Cardiothorac Surg. 2005;  27 1057-1064
  • 70 Stuber F, Petersen M, Bokelmann F. et al . A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis.  Crit Care Med. 1996;  24 381-384
  • 71 Majetschak M, Flohé S, Obertacke U. et al . Relation of a TNF gene polymorphism to severe sepsis in trauma patients.  Ann Surg. 1999;  230 207-214
  • 72 Flach R, Majetschak M, Heukamp T. et al . Relation of ex vivo stimulated blood cytokine synthesis to post-traumatic sepsis.  Cytokine. 1999;  11 173-178
  • 73 Schroeder S, Borger N, Wrigge H. et al . A tumor necrosis factor gene polymorphism influences the inflammatory response after cardiac operation.  Ann Thorac Surg. 2003;  75 534-537
  • 74 Tomasdottir H, Hjartarson H, Ricksten A. et al . Tumor necrosis factor gene polymorphism is associated with enhanced systemic inflammatory response and increased cardiopulmonary morbidity after cardiac surgery.  Anesth Analg. 2003;  97 944-949
  • 75 Brull D J, Montgomery H E, Sanders J. et al . Interleukin-6 gene - 174 g>c and - 572 g>c promoter polymorphisms are strong predictors of plasma interleukin-6 levels after coronary artery bypass surgery.  Arterioscler Thromb Vasc Biol. 2001;  21 1458-1463
  • 76 Gaudino M, Andreotti F, Zamparelli R. et al . The - 174 G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication?.  Circulation. 2003;  108 (Suppl 1) II195-II199
  • 77 Galley H F, Lowe P R, Carmichael R L. et al . Genotype and interleukin-10 responses after cardiopulmonary bypass.  Br J Anaesth. 2003;  91 424-426
  • 78 Ryan T, Balding J, McGovern E M. et al . Lactic acidosis after cardiac surgery is associated with polymorphisms in tumor necrosis factor and interleukin 10 genes.  Ann Thorac Surg. 2002;  73 1905-1909
  • 79 Philip I, Plantefeve G, Vuillaumier-Barrot S. et al . G894T polymorphism in the endothelial nitric oxide synthase gene is associated with an enhanced vascular responsiveness to phenylephrine.  Circulation. 1999;  99 3096-3098
  • 80 Lefer D J, Granger D N. Oxidative stress and cardiac disease.  Am J Med. 2000;  109 315-323
  • 81 Cavarocchi N C, England M D, Schaff H V. et al . Oxygen free radical generation during cardiopulmonary bypass: correlation with complement activation.  Circulation. 1986;  74 III130-III133
  • 82 Cavalca V, Sisillo E, Veglia F. et al . Isoprostanes and oxidative stress in off-pump and on-pump coronary bypass surgery.  Ann Thorac Surg. 2006;  81 562-567
  • 83 Gerritsen W B, van Boven W J, Driessen A H. et al . Off-pump versus on-pump coronary artery bypass grafting: oxidative stress and renal function.  Eur J Cardiothorac Surg. 2001;  20 923-929
  • 84 Sahlman A, Ahonen J, Nemlander A. et al . Myocardial metabolism on off-pump surgery; a randomized study of 50 cases.  Scand Cardiovasc J. 2003;  37 211-215
  • 85 Butler J, Rocker G M, Westaby S. Inflammatory response to cardiopulmonary bypass.  Ann Thorac Surg. 1993;  55 552-559
  • 86 Edmunds Jr L H. Blood-surface interactions during cardiopulmonary bypass.  J Card Surg. 1993;  8 404-410
  • 87 Angelini G D, Taylor F C, Reeves B C. et al . Early and midterm outcome after off-pump and on-pump surgery in Beating Heart Against Cardioplegic Arrest Studies (BHACAS 1 and 2): a pooled analysis of two randomised controlled trials.  Lancet. 2002;  359 1194-1199
  • 88 van Dijk D, Nierich A P, Jansen E W. et al . Early outcome after off-pump versus on-pump coronary bypass surgery: results from a randomized study.  Circulation. 2001;  104 1761-1766
  • 89 Mariani M A, Gu Y J, Boonstra P W. et al . Procoagulant activity after off-pump coronary operation: is the current anticoagulation adequate?.  Ann Thorac Surg. 1999;  67 1370-1375
  • 90 Casati V, Gerli C, Franco A. et al . Activation of coagulation and fibrinolysis during coronary surgery: on-pump versus off-pump techniques.  Anesthesiology. 2001;  95 1103-1109
  • 91 Mangano D T. Aspirin and mortality from coronary bypass surgery.  N Engl J Med. 2002;  347 1309-1317

Dr. Jochen Börgermann

Department of Cardiac and Thoracic Surgery
Martin-Luther-University Halle-Wittenberg

Ernst-Grube-Straße 40

06120 Halle/Saale

Germany

Phone: + 49 34 55 57 27 19

Fax: + 49 34 55 57 27 82

Email: jochen.boergermann@t-online.de

    >