Plant Biol (Stuttg) 2007; 9(6): 745-757
DOI: 10.1055/s-2007-965579
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Structural, Biochemical, and Physiological Characterization of C4 Photosynthesis in Species Having Two Vastly Different Types of Kranz Anatomy in Genus Suaeda (Chenopodiaceae)

E. V. Voznesenskaya1 , S. D. X. Chuong2 , N. K. Koteyeva1 , V. R. Franceschi2 , H. Freitag3 , G. E. Edwards2
  • 1Laboratory of Anatomy and Morphology, V.L. Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376 St. Petersburg, Russia
  • 2School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
  • 3Institute of Biology, Kassel University, 34109 Kassel, Germany
Further Information

Publication History

Received: October 19, 2006

Accepted: December 15, 2006

Publication Date:
21 September 2007 (online)

Abstract

C4 species of family Chenopodiaceae, subfamily Suaedoideae have two types of Kranz anatomy in genus Suaeda, sections Salsina and Schoberia, both of which have an outer (palisade mesophyll) and an inner (Kranz) layer of chlorenchyma cells in usually semi-terete leaves. Features of Salsina (S. aegyptiaca, S. arcuata, S. taxifolia) and Schoberia type (S. acuminata, S. eltonica, S. cochlearifolia) were compared to C3 type S. heterophylla. In Salsina type, two layers of chlorenchyma at the leaf periphery surround water-storage tissue in which the vascular bundles are embedded. In leaves of the Schoberia type, enlarged water-storage hypodermal cells surround two layers of chlorenchyma tissue, with the latter surrounding the vascular bundles. The chloroplasts in Kranz cells are located in the centripetal position in Salsina type and in the centrifugal position in the Schoberia type. Western blots on C4 acid decarboxylases show that both Kranz forms are NAD-malic enzyme (NAD‐ME) type C4 species. Transmission electron microscopy shows that mesophyll cells have chloroplasts with reduced grana, while Kranz cells have chloroplasts with well-developed grana and large, specialized mitochondria, characteristic of NAD‐ME type C4 chenopods. In both C4 types, phosphoenolpyruvate carboxylase is localized in the palisade mesophyll, and Rubisco and mitochondrial NAD‐ME are localized in Kranz cells, where starch is mainly stored. The C3 species S. heterophylla has Brezia type isolateral leaf structure, with several layers of Rubisco-containing chlorenchyma. Photosynthetic response curves to varying CO2 and light in the Schoberia type and Salsina type species were similar, and typical of C4 plants. The results indicate that two structural forms of Kranz anatomy evolved in parallel in species of subfamily Suaedoideae having NAD‐ME type C4 photosynthesis.

References

  • 1 Aliscioni S. S., Giussani L. M., Zuloaga F. O., Kellogg E. A.. A molecular phylogeny of Panicum (Poaceae: Paniceae): Tests of monophyly and phylogenetic placement within the Panicoideae.  American Journal of Botany. (2003);  90 796-821
  • 2 Behnke H.-D.. Sieve-element characters.  Nordic Journal of Botany. (1981);  1 381-400
  • 3 Bil K. J., Ljubimov V. Y., Trusov M. F., Gedemov T., Atachanov B. O.. The participation of three types of autotrophic tissue in diurnal dynamic of CO2 assimilation in some Chenopodiaceae species.  Botanicheskii Zhurnal. (1983);  68 54-61
  • 4 Bil K. Y., Lyubimov V. Y., Demidova R. N., Gedemov T.. Assimilation of CO2 by plants of Chenopodiaceae family with three types of autotrophic tissues in the leaves.  Soviet Plant Physiology. (1982);  28 808-815
  • 5 Bil K. J., Gedemov T.. Features of the structure and function of assimilation apparatus of Suaeda arcuata Bunge (fam. Chenopodiaceae) connected with cooperative photosynthesis.  Doklady Akademii Nauk SSSR, Comptes rendus de l'Académie des Sciences de l'URSS. (1980);  250 1014-1017
  • 6 Brooks A., Farquhar G. D.. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light.  Planta. (1985);  165 397-406
  • 7 Brown W. V.. Variations in anatomy, associations, and origin of Kranz tissue.  American Journal of Botany. (1975);  62 395-402
  • 8 Brown W. V.. The Kranz syndrome and its subtypes in grass systematics.  Memoires of the Torrey Botanical Club. (1977);  23 1-97
  • 9 Carolin R. C., Jacobs S. W. L., Vesk M.. The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae.  Botanical Journal of the Linnean Society. (1973);  66 259-275
  • 10 Carolin R. C., Jacobs S. W. L., Vesk M.. Leaf structure in Chenopodiaceae.  Botanische Jahrbücher für Systematische Pflanzengeschichte und Pflanzengeographie. (1975);  95 226-255
  • 11 Carolin R. C., Jacobs S. W. L., Vesk M.. Kranz cells and mesophyll in the Chenopodiales.  Australian Journal of Botany. (1978);  26 683-698
  • 12 Carolin R. C., Jacobs S. W. L., Vesk M.. The chlorenchyma of some members of the Salicornieae (Chenopodiaceae).  Australian Journal of Botany. (1982);  30 387-392
  • 13 Dengler N. G., Nelson T.. Leaf structure and development in C4 plants. Sage, R. F. and Monson, R. K., eds. C4 Plant Biology. Physiological Ecology Series. San Diego; Academic Press (1999): 133-172
  • 14 Edwards G. E., Franceschi V. R., Voznesenskaya E. V.. Single cell C4 photosynthesis versus the dual-cell (Kranz) paradigm.  Annual Review of Plant Biology. (2004);  55 173-196
  • 15 Fisher D. D., Schenk H. J., Thorsch J. A., Ferren Jr. W. R.. Leaf anatomy and subgeneric affiliation of C3 and C4 species of Suaeda (Chenopodiaceae) in North America.  American Journal of Botany. (1997);  84 1198-1210
  • 16 Freitag H., Stichler W.. A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiaceae.  Plant Biology. (2000);  2 154-160
  • 17 Freitag H., Stichler W.. Bienertia cycloptera Bunge ex Boiss., Chenopodiaceae, another C4 plant without Kranz tissues.  Plant Biology. (2002);  4 121-132
  • 18 Gamaley Y. V.. The variations of the Kranz-anatomy in Gobi and Karakum plants.  Botanicheskii Zhurnal. (1985);  70 1302-1314
  • 19 Gamaley Y. V., Glagoleva T. A., Koltschevsky K. G., Chulanovskaya M. V.. The C4-syndrome type ecology and evolution in connection with phylogeny of the Chenopodiaceae and Poaceae.  Botanicheskii Zhurnal. (1992);  77 1-12
  • 20 Giussani L. M., Cota-Sanches J. H., Zuloaga F. O., Kellogg E. A.. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis.  American Journal of Botany. (2001);  88 1993-2012
  • 21 Glagoleva T. A., Chulanovskaya M. V., Pakhomova M. V., Voznesenskaya E. V., Gamaleï Y. V.. Effect of salinity on the structure of assimilating organs and 14C labelling patterns in C3 and C4 plants of Ararat plain.  Photosynthetica. (1992);  26 363-369
  • 22 Glagoleva T. A., Voznesenskaya E. V., Kolchevsky K. G., Kocharyan N. I., Pakhomova M. V., Chulanovskaya M. V., Gamaley Y. V.. Structural and functional characteristics of halophytes from the Ararat.  Fiziologiya Rastenii. (1990);  37 1080-1088
  • 23 Glagoleva T. A., Zeynalova M. G., Gamaley Y. V.. Structural and functional characteristics of succulent desert plants of the Chenopodiaceae family.  Botanicheskii Zhurnal. (1987);  72 1175-1186
  • 24 GPWG . Phylogeny and subfamilial classification of the grasses (Poaceae).  Annals of the Missouri Botanical Garden. (2001);  88 373-457
  • 25 Guralnick L. J., Edwards G. E., Ku M. S. B., Hockema B., Franceschi V. R.. Photosynthetic and anatomical characteristics in the C4-Crassulacean acid metabolism-cycling plant, Portulaca grandiflora.  Functional Plant Biology. (2002);  29 763-773
  • 26 Gutierrez M., Gracen V. E., Edwards G. E.. Biochemical and cytological relationships in C4 plants.  Planta. (1974);  119 279-300
  • 27 Hatch M. D., Kagawa T., Craig S.. Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features.  Australian Journal of Plant Physiology. (1975);  2 111-128
  • 28 Hattersley P. W.. Variations in photosynthetic pathway. Soderstrom, T. R., Hilu, K. W., Campbell, C. S., and Barkworth, M. E., eds. Grass Systematics and Evolution. London; Smithsonian Institution Press Washington, D.C. (1987): 49-64
  • 29 Hattersley P. W., Browning A. J.. Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheaths and PCR (“Kranz”) sheaths.  Protoplasma. (1981);  109 371-401
  • 30 Jacobs S. W. L.. Review of leaf anatomy and ultrastructure in the Chenopodiaceae (Caryophyllales).  The Journal of the Torrey Botanical Society. (2001);  128 236-253
  • 31 Kadereit G., Borsch T., Weising K., Freitag H.. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis.  International Journal of Plant Sciences. (2003);  164 959-986
  • 32 Kapralov M. V., Akhani H., Voznesenskaya E., Edwards G., Franceschi V. R., Roalson E. H.. Phylogenetic relationships in the Salicornioideae/Suaedoideae/Salsoloideae s.l. (Chenopodiaceae) clade and a clarification of the phylogenetic position of Bienertia and Alexandra using multiple DNA sequence datasets.  Systematic Botany. (2006);  31 571-585
  • 33 Kiirats O., Lea P. J., Franceschi V. R., Edwards G. E.. Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in a C4 cycle mutant and wild-type Amaranthus edulis. .  Plant Physiology. (2002);  130 964-976
  • 34 Koch K., Kennedy R. A.. Characteristics of Crassulacean Acid Metabolism in the succulent C4 dicot, Portulaca oleracea L.  Plant Physiology. (1980);  65 193-197
  • 35 Ku M. S. B., Edwards G., Tanner C. B.. Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in Solanum tuberosum. .  Plant Physiology. (1977);  59 868-872
  • 36 Lara M. V., Drincovich M. F., Andreo C. S.. Induction of a crassulacean acid-like metabolism in the C4 succulent plant, Portulaca oleracea L.: Study of enzymes involved in carbon fixation and carbohydrate metabolism.  Plant and Cell Physiology. (2004);  45 618-626
  • 37 Liu Y., Dengler N. G.. Bundle sheath and mesophyll cell differentiation in the C4 dicotyledon Atriplex rosea: quantitative ultrastructure.  Canadian Journal of Botany. (1994);  72 644-657
  • 38 Long J. J., Berry J. O.. Tissue-specific and light-mediated expression of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria.  Plant Physiology. (1996);  112 473-482
  • 39 Maurino V. G., Drincovich M. F., Andreo C. S.. NADP-malic enzyme isoforms in maize leaves.  Biochemistry and Molecular Biology International. (1996);  38 239-250
  • 40 O'Brian T. P., Carr D. J.. A suberized layer in the cell walls of the bundle sheath of grasses.  Australian Journal of Biological Sciences. (1970);  23 275-287
  • 41 Ohsugi R., Murata T., Chonan N.. C4 syndrome of the species in the Dichotomiflora group of the genus Panicum (Gramineae).  Botanical Magazine Tokyo. (1982);  95 339-347
  • 42 Pyankov V. I., Kuz'min A. N., Demidov E. D., Maslov A. I.. Diversity of biochemical pathways of CO2 fixation in plants of the families Poaceae and Chenopodiaceae from the arid zone of Central Asia.  Soviet Plant Physiology. (1992);  39 411-420
  • 43 Pyankov V. I., Vakhrusheva D. V.. Pathways of primary CO2 fixation in C4 plants of the family Chenopodiaceae from the arid zone of Central Asia.  Soviet Plant Physiology. (1989);  36 178-187
  • 44 Pyankov V. I., Voznesenskaya E. V., Kuz'min A. N., Ku M. S. B., Ganko E., Franceschi V. R., Black Jr. C. C., Edwards G. E.. Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae).  Photosynthesis Research. (2000);  63 69-84
  • 45 Sage R. F., Li M., Monson R. K.. The taxonomic distribution of C4 photosynthesis. Sage, R. F. and Monson, R. K., eds. C4 Plant Biology. New York; Academic Press (1999): 551-584
  • 46 Schütze P., Freitag H., Weising K.. An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae).  Plant Systematics and Evolution. (2003);  239 257-286
  • 47 Shojima S., Nishizawa N. K., Mori S.. Do intrathylakoidal inclusions really contain RuBPCase?.  Protoplasma. (1987);  140 187-189
  • 59 Shomer-Ilan A., Beer S., Waisel Y.. Suaeda monoica, a C4 plant without typical bundle sheaths.  Plant Physiology. (1975);  56 676-679
  • 48 Shomer-Ilan A., Neumann-Ganmore R., Waisel Y.. Biochemical specialization of photosynthetic cell layers and carbon flow paths in Suaeda monoica.  Plant Physiology. (1979);  64 963-965
  • 49 Shomer-Ilan A. S., Nissenbaum A., Waisel Y.. Photosynthetic pathways and the ecological distribution of the Chenopodiaceae in Israel.  Oecologia. (1981);  48 244-248
  • 50 Ueno O.. Ultrastructural localization of photosynthetic and photorespiratory enzymes in epidermal, mesophyll, bundle sheath, and vascular bundle cells of the C4 dicot Amaranthus viridis.  Journal of Experimental Botany. (2001);  52 1003-1013
  • 51 von Caemmerer S., Farquhar G. D.. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.  Planta. (1981);  153 376-387
  • 52 von Caemmerer S., Furbank R. T.. The C4 pathway: an efficient CO2 pump.  Photosynthesis Research. (2003);  77 191-207
  • 53 Voznesenskaya E. V.. The ultrastructure of assimilating organs in some species of Chenopodiaceae family. I.  Botanicheskii Zhurnal. (1976 a);  61 342-351
  • 54 Voznesenskaya E. V.. Ultrastructure of assimilating organs of some species of the family Chenopodiaceae. II.  Botanicheskii Zhurnal. (1976 b);  61 1546-1557
  • 55 Voznesenskaya E. V., Franceschi V. R., Chuong S. D. X., Edwards G. E.. Functional characterization of phosphoenolpyruvate carboxykinase type C4 leaf anatomy: Immuno, cytochemical and ultrastructural analyses.  Annals of Botany. (2006);  98 77-91
  • 56 Voznesenskaya E. V., Franceschi V. R., Pyankov V. I., Edwards G. E.. Anatomy, chloroplast structure and compartmentation of enzymes relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae (Chenopodiaceae).  Journal of Experimental Botany. (1999);  50 1779-1795
  • 57 Voznesenskaya E. V., Gamaley Y. V.. The ultrastructural characteristics of leaf types with Kranz-anatomy.  Botanicheskii Zhurnal. (1986);  71 1291-1307
  • 58 Yoshimura Y., Kubota F., Ueno O.. Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase.  Planta. (2004);  220 307-317

G. E. Edwards

School of Biological Sciences
Washington State University

Pullman, WA 99164-4236

USA

Email: edwardsg@wsu.edu

Editor: R. C. Leegood

    >