Plant Biol (Stuttg) 2007; 9(5): 573-581
DOI: 10.1055/s-2007-965431
Review Article

Georg Thieme Verlag Stuttgart KG · New York

The Effect of Sulfur Nutrition on Plant Glucosinolate Content: Physiology and Molecular Mechanisms

K. L. Falk1 , J. G. Tokuhisa1 , 2 , J. Gershenzon1
  • 1Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
  • 2Present address: Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Further Information

Publication History

Received: February 26, 2007

Accepted: May 9, 2007

Publication Date:
13 September 2007 (online)

Abstract

Glucosinolates are sulfur-rich plant metabolites of the order Brassicales that function in the defense of plants against pests and pathogens. They are also important in human society as flavor components, cancer-prevention agents, and crop biofumigants. Since glucosinolates may represent up to 30 % of the total sulfur content of plant organs, their accumulation should depend intimately on the sulfur status of the entire plant. Here we review the literature on how sulfur supply affects glucosinolate content. In field and greenhouse experiments involving soil, hydroponic and tissue culture media, sulfur fertilisation usually led to an increase in glucosinolate content ranging from 25 % to more than 50-fold, depending on the plant species, amount of sulfur applied, and type of treatment. The effect was greater on glucosinolates derived from the sulfur amino acid, methionine, than on glucosinolates derived from tryptophan. These changes are regulated not by simple mass action effects, but by extensive changes in gene transcription. In sulfur-deficient plants, there is a general down-regulation of glucosinolate biosynthetic genes which accompanies an up-regulation of genes controlling sulfur uptake and assimilation. Glucosinolates may be considered a potential source of sulfur for other metabolic processes under low-sulfur conditions, since increased breakdown of glucosinolates has been reported under sulfur deficiency. However, the pathway for sulfur mobilisation from glucosinolates has not been determined. The breakdown of indolic glucosinolates to form auxin in roots under sulfur-deficient conditions may help stimulate root formation for sulfur uptake.

References

  • 1 Aires A., Rosa E., Carvalho R.. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica).  Journal of the Science of Food and Agriculture. (2006);  86 1512-1516
  • 2 Blake-Kalff M. M. A., Harrison K. R., Hawkesford M. J., Zhao F. J., McGrath S. P.. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth.  Plant Physiology. (1998);  118 1337-1344
  • 3 Blake-Kalff M. M. A., Hawkesford M. J., Zhao F. J., McGrath S. P.. Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.).  Plant and Soil. (2000);  225 95-107
  • 4 Bloem E., Haneklaus S., Schnug E.. Influence of nitrogen and sulfur fertilization on the alliin content of onions and garlic.  Journal of Plant Nutrition. (2004);  27 1827-1839
  • 75 Bloem E., Haneklaus S., Salac I., Wickenhäuser P., Schnug E.. Facts and fiction about sulfur metabolism in relation to plant-pathogen interactions.  Plant Biology. (2007);  9 596-607
  • 5 Bones A. M., Visvalingam S., Thangstad O. P.. Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinase).  Planta. (1994);  193 558-566
  • 6 Brader G., Mikkelsen M. D., Halkier B. A., Palvia E. T.. Altering glucosinolate profiles modulates disease resistance in plants.  The Plant Journal. (2006);  46 758-767
  • 7 Bridges M., Jones A. M. E., Bones A. M., Hodgson C., Cole R., Bartlet E., Wallsgrove R., Karapapa V. K., Watts N., Rossiter J. T.. Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant.  Proceedings of the Royal Society of London, Series B. (2002);  269 187-191
  • 8 Broekaert W. F., Terras F. R. G., Cammue B. P. A., Osborn R. W.. Plant defensins: novel antimicrobial peptides as components of the host defense system.  Plant Physiology. (1995);  108 1353-1358
  • 9 Brown P. D., Tokuhisa J. G., Reichelt M., Gershenzon J.. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana.  Phytochemistry. (2003);  62 471-481
  • 10 Buchner P., Stuiver C. S. E., Westerman S., Wirtz M., Hell R., Hawkesford M. J., De Kok L. J.. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition.  Plant Physiology. (2004);  136 3396-3408
  • 11 Burandt P., Papenbrock J., Schmidt A., Bloem E., Haneklaus S., Schnug E.. Genotypical differences in total sulfur contents and cysteine desulfhydrase activities in Brassica napus L.  Phyton (Horn, Austria). (2001);  41 75-86
  • 12 Castro A., Aires A., Rosa E., Bloem E., Stulen I., Dekok L. J.. Distribution of glucosinolates in Brassica oleracea cultivars.  Phyton (Horn, Austria). (2004);  44 133-143
  • 13 Clarkson D. T., Smith F. W., Vanden Berg P. J.. Regulation of sulphate transport in a tropical legume, Macroptilium atropurpureum cv. Siratro.  Journal of Experimental Botany. (1983);  34 1463-1483
  • 14 Clossais-Besnard N., Larher F.. Physiological role of glucosinolates in Brassica napus: concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle.  Journal of the Science of Food and Agriculture. (1991);  56 25-38
  • 15 Davik J., Bakken A. K.. Seed yield and sulphur partitioning in two inbred lines of low and high glucosinolate oilseed rape (Brassica napus L.) and their hybrids at three levels of sulphur supply.  Acta Agriculturae Scandinavica, Sect B, Soil and Plant Science. (1999);  49 184-188
  • 16 Deane-Drummond C. E.. The regulation of sulphate uptake following growth of Pisum sativum L. seedlings in S nutrient limiting conditions. Interaction between nitrate and sulphate transport.  Plant Science. (1987);  50 27-35
  • 17 Dijkshoorn W. J., Van Wijk A. L.. The sulphur requirements of plants as evidenced by the sulphur-nitrogen ratio in the organic matter: a review of the published data.  Plant and Soil. (1967);  26 129-157
  • 18 Dosdall L. M., Clayton G. W., Harker K. N., O'Donovan J. T., Stevenson F. C.. The effects of soil fertility and other agronomic factors on infestations of root maggots in Canola.  Agronomy Journal. (2004);  96 1306-1313
  • 19 Dubuis P. H., Marazzi C., Staedler E., Mauch F.. Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape.  Journal of Phytopathology. (2005);  153 27-36
  • 20 Fahey J. W., Zhang Y., Talalay P.. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogenesis.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 10367-10372
  • 21 Fahey J. W., Zalcmann A. T., Talalay P.. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.  Phytochemistry. (2001);  56 5-51
  • 22 Fieldsend J., Milford G. F. J.. Changes in glucosinolates during crop development in single- and double-low genotypes of winter oilseed rape (Brassica napus): Production and distribution in vegetative tissues and developing pods during development and potential role in the recycling of sulphur within the crop.  Annals of Applied Biology. (1994);  124 531-542
  • 23 Grayston S. J., Germida J. J.. Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola.  Canadian Journal of Microbiology. (1991);  37 521-529
  • 24 Guo H. W., Ecker J. R.. The ethylene signaling pathway: new insights.  Current Opinion in Plant Biology. (2004);  7 40-49
  • 25 Halkier B., Gershenzon J.. Biology and biochemistry of glucosinolates.  Annual Review of Plant Biology. (2006);  57 303-333
  • 26 Hall C., McCallum D., Prescott A., Mithen R.. Biochemical genetics of glucosinolate modification in Arabidopsis and Brassica. .  Theoretical and Applied Genetics. (2001);  102 369-374
  • 27 Hawkesford M. J.. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency.  Journal of Experimental Botany. (2000);  51 131-138
  • 28 Hirai M. Y., Fujiwara T., Awazuhara M., Kimura T., Noji M., Saito K.. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition.  The Plant Journal. (2003);  33 651-663
  • 29 Hirai M. Y., Yano M., Goodenowe D. B., Kanaya S., Kimura T., Awazuhara M., Arita M., Fujiwara T., Saito K.. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 10205-10210
  • 30 Hirai M. Y., Klein M., Fujikawa Y., Yano M., Goodenowe D. B., Yamazaki Y., Kanaya S., Nakamura Y., Kitayama M., Suzuki H., Sakurai N., Shibata D., Tokuhisa J., Reichelt M., Gershenzon J., Papenbrock J., Saito K.. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics.  Journal of Biological Chemistry. (2005);  280 25590-25595
  • 31 Hopkins R. J., Ekbom B., Henkow L.. Glucosinolate content and susceptibility for insect attack of three populations of Sinapis alba.  Journal of Chemical Ecology. (1998);  24 1203-1216
  • 32 Hugentobler U., Renwick J. A. A.. Effects of plant nutrition on the balance of insect relevant cardenolides and glucosinolates in Erysimum cheiranthoides.  Oecologia. (1995);  102 95-101
  • 33 Jost R., Altschmied L., Bloem E., Bogs J., Gershenzon J., Haehnel U., Haensch R., Hartmann T., Kopriva S., Kruse C., Mendel R. R., Papenbrock J., Reichelt M., Rennenberg H., Schnug E., Schmidt A., Textor S., Tokuhisa J., Wachter A., Wirtz M., Rausch T., Hell R.. Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana.  Photosynthesis Research. (2005);  86 491-508
  • 34 Kataoka T., Watanabe-Takahashi A., Hayashi N., Ohnishi M., Mimura T., Buchner P., Hawkesford M. J., Yamaya T., Takahashi H.. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis.  Plant Cell. (2004);  16 2693-2704
  • 35 Kim S.-J., Matsuo T., Watanabe M., Watanabe Y.. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.).  Soil Science and Plant Nutrition. (2002);  48 43-49
  • 36 Kopsell D. E., Kopsell D. A., Randle W. M., Coolong T. W., Sams C. E., Curran-Celentano J.. Kale carotenoids remain stable while flavor compounds respond to changes in sulfur fertility.  Journal of Agricultural and Food Chemistry. (2003);  51 5319-5325
  • 76 Kruse C., Jost R., Lipschis M., Kopp B., Hartmann M., Hell R.. Sulfur-enhanced defence: effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle.  Plant Biology. (2007);  9 608-619
  • 37 Kutz A., Mueller A., Hennig P., Kaiser W. M., Piotrowski M., Weiler E. M.. A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana.  The Plant Journal. (2002);  30 95-106
  • 38 Lakkineni K. C., Abrol Y. P.. Effect of sulfur fertilization on Rapeseed-mustard and Groundnut.  Phyton (Horn, Austria). (1992);  32 75-78
  • 39 Marazzi C., Patrian B., Städler E.. Secondary metabolites of the leaf surface affected by sulphur fertilization and perceived by diamondback moth.  Chemoecology. (2004 a);  14 81-86
  • 40 Marazzi C., Patrian B., Städler E.. Secondary metabolites of the leaf surface affected by sulphur fertilization and perceived by cabbage root fly.  Chemoecology. (2004 b);  14 87-94
  • 41 Marschner H.. Mineral Nutrition of Higher Plants, 2nd ed. London; Academic Press (1995)
  • 42 Maruyama-Nakashita A., Inoue E., Watanabe-Takahashi A., Yamaya T., Takahashi H.. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways.  Plant Physiology. (2003);  132 597-605
  • 43 Maruyama-Nakashita A., Nakamura Y., Tohge T., Saito K., Takahashi H.. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism.  Plant Cell. (2006);  18 3235-3251
  • 44 Matallana L., Kleinwaechter M., Selmar D.. Sulfur is limiting the glucosinolate accumulation in nasturtium in vitro plants (Tropaeolum majus L.).  Journal of Applied Botany and Food Quality. (2006);  80 1-5
  • 45 McCallum J., Porter N., Searle B., Shaw M., Bettjeman B., McManus M.. Sulfur and nitrogen fertility affects flavour of field-grown onions.  Plant and Soil. (2005);  269 151-158
  • 46 Nikiforova V., Freitag J., Kempa S., Adamik M., Hesse H., Hoefgen R.. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity.  The Plant Journal. (2003);  33 633-650
  • 47 Nikiforova V. J., Kopka J., Tolstikov V., Fiehn O., Hopkins L., Hawkesford M. J., Hesse H., Hoefgen R.. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants.  Plant Physiology. (2005);  138 304-318
  • 48 Petersen B. L., Chen S., Hansen C. H., Olsen C. E., Halkier B. A.. Composition and content of glucosinolates in developing Arabidopsis thaliana.  Planta. (2002);  214 562-571
  • 49 Rangkadilok N., Nicolas M. E., Bennett R. N., Eagling D. R., Premier R. R., Taylor P. W. J.. The effect of sulfur fertilizer on glucoraphanin levels in Broccoli (B. oleracea L. var. italica) at different growth stages.  Journal of Agricultural and Food Chemistry. (2004);  52 2632-2639
  • 50 Ratzka A., Vogel H., Kliebenstein D. J., Mitchell-Olds T., Kroymann J.. Disarming the mustard oil bomb.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 11223-11228
  • 51 Rosa E. A. S., Heaney R. K., Rego F. C., Fenwick G. R.. The variation of glucosinolate concentration during a single day in young plants of Brassica oleracea var. acephala and capitata.  Journal of the Science of Food and Agriculture. (1994);  66 457-463
  • 52 Rosa E. A. S., Heaney R. K., Portas C. A. M., Fenwick G. R.. Changes in glucosinolate concentrations in Brassica crops (B. oleracea and B. napus) throughout growing seasons.  Journal of the Science of Food and Agriculture. (1996);  71 237-244
  • 53 Rosen C. J., Fritz V. A., Gardner G. M., Hecht S. S., Carmella S. G., Kenney P. M.. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility.  HortScience. (2005);  40 1493-1498
  • 54 Salac I., Haneklaus S., Bloem E., Booth E., Sutherland K., Walker K., Schnug E.. Influence of sulfur fertilization on sulfur metabolites, disease incidence and severity of fungal pathogens in oilseed rape in Scotland.  Landbauforschung Völkenrode. (2006);  56 1-4
  • 55 Scheuner E. T., Schmidt S., Krumbein A., Schonhof I., Schreiner M.. Effect of methionine foliar fertilization on glucosinolate concentration in broccoli and radish.  Journal of Plant Nutrition and Soil Science. (2005);  168 275-278
  • 56 Schnug E., Haneklaus S.. Physiological backgrounds of different sulphur utilization in Brassica napus varieties.  Aspects of Applied Biology. (1993);  34 235-242
  • 57 Schnug E., Haneklaus S., Borchers A., Polle A.. Relations between sulphur supply and glutathione and ascorbate concentrations in Brassica napus.  Zeitschrift für Pflanzenernährung und Bodenkunde. (1995);  158 67-69
  • 58 Svanem P.-J., Bones A. M., Rossiter J. T.. Metabolism of [α-14C]-desulphophenylethylglucosinolate in Nasturtium officinale.  Phytochemistry. (1997);  44 1251-1255
  • 59 Takahashi H., Yamazaki M., Sasakura N., Watanabe A., Leustek T., de Almeida Engler J., Engler G., Van Montagu M., Saito K.. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 11102-11107
  • 60 Takahashi J., Watanabe-Takahashi A., Smith F. W., Blake-Kalff M., Hawkesford M. J., Saito K.. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana.  The Plant Journal. (2000);  23 171-182
  • 61 Tierens K. F. M.-J., Thomma B. P. H. J., Brouwer M., Schmidt J., Kistner K., Porzel A., Mauch-Mani B., Cammue B. P. A., Broekaert W. P.. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance to Arabidopsis to microbial pathogens.  Plant Physiology. (2001);  125 1688-1699
  • 62 Vallejo F., Garcia-Viguera C., Tomas-Barberian F. A.. Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development.  Journal of Agricultural and Food Chemistry. (2003 a);  51 3776-3782
  • 63 Vallejo F., Tomas-Barberan F. A., Gonzales Benavente-Garcia A., Garcia-Viguera C.. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions.  Journal of the Science of Food and Agriculture. (2003 b);  83 307-313
  • 64 Van der Kooij T. A. W., De Kok L. J., Haneklaus S., Schnug E.. Uptake and metabolism of sulphur dioxide by Arabidopsis thaliana.  New Phytologist. (1997);  135 101-107
  • 65 Visvalingam S., Honsi T. G., Bones A. M.. Sulphate and micronutrients can modulate the expression levels of myrosinase in Sinapis alba plants.  Physiologia Plantarum. (1998);  104 30-37
  • 66 Vong P. C., Lasserre-Joulin F., Guckert A.. Mobilization of labeled organic sulfur in rhizosphere of rape and barley and in non-rhizosphere soil.  Journal of Plant Nutrition. (2002);  25 2191-2204
  • 67 Walker K. C., Booth E. J.. Sulphur nutrition and oilseed quality. Abrol, Y. P. and Ahmad, A., eds. Sulphur in Plants. Dordrecht; Kluwer Academic Publishers (2003): 323-339
  • 68 Williams J. S., Cooper R. M.. Elemental sulphur is produced by diverse plant families as a component of defence against fungal and bacterial pathogens.  Physiological and Molecular Plant Pathology. (2003);  63 3-16
  • 69 Withers P. J. A., O'Donnell F. M.. The response of double-low winter oilseed rape to fertiliser sulphur.  Journal of the Science of Food and Agriculture. (1994);  66 93-101
  • 70 Wittstock U., Agerbirk N., Stauber E. J., Olsen C. E., Hippler M., Mitchell-Olds T., Gershenzon J., Vogel H.. Successful herbivore attack due to metabolic diversion of a plant chemical defense.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 4859-4864
  • 71 Yoshimoto N., Takahashi H., Smith F. W., Yamaya T., Saito K.. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots.  The Plant Journal. (2002);  29 465-473
  • 72 Yusuf S. W., Collins G. G.. Effect of soil sulphur levels on feeding preference of Brevicoryne brassicae on Brussels sprouts.  Journal of Chemical Ecology. (1998);  24 417-424
  • 73 Zhao F., Bilsborrow P. E., Evans E. J., Syers J. K.. Sulphur turnover in the developing pods of single and double low varieties of oilseed rape (Brassica napus L.)  Journal of the Science of Food and Agriculture. (1993);  62 111-119
  • 74 Zhao F., Evans E. J., Bilsborrow P. E., Syers J. K.. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L).  Journal of the Science of Food and Agriculture. (1994);  64 295-304

J. Gershenzon

Max Planck Institute for Chemical Ecology

Hans-Knöll-Straße 8

07745 Jena

Germany

Email: gershenzon@ice.mpg.de

Guest Editor: T. Rausch