Abstract
Tissue engineering can regenerate autologous tissue using a biodegradable scaffold
and in vitro expanded cells derived from small biopsy samples, and thus may have great potential
for tissue repair and reconstruction in plastic and reconstructive surgery. As an
important step towards a clinical application, research work in large animals is essential.
This article presents our experience of tissue engineering and repair in large animals
in the areas of bone, cartilage and tendon.
Zusammenfassung
Das Tissue Engineering bietet durch die Anwendung biologisch abbaubarer Trägerstrukturen,
die mit in vitro expandierten und durch eine kleine Biopsie gewonnenen autologen Zellen besiedelt
werden, eine vielversprechende Perspektive für die Regeneration von autologem Gewebe
und die Wiederherstellung bei Gewebedefekten in der Plastischen Chirurgie. Ein wichtiger
Schritt auf dem Weg zur klinischen Anwendung sind experimentelle Untersuchungen in
größeren Versuchstieren wie dem Schaf. Die vorliegende Arbeit fasst unsere experimentellen
Erfahrung mit dem Tissue Engineering und der Geweberekonstruktion von Knochen, Knorpel
und Sehnen im Tierversuch zusammen.
Key words
tissue engineering - bone - cartilage - tendon
Schlüsselwörter
Gewebezüchtung - Knochen - Knorpel - Sehne
References
1
Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y.
In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary
report.
Tissue Eng.
2006;
12
1369-1377
2
Cao Y, Liu Y, Liu W, Shan Q, Buonocore S D, Cui L.
Bridging tendon defects using autologous tenocyte engineered tendon in a hen model.
Plast Reconstr Surg.
2002;
110
1280-1289
3
Cao Y, Vacanti J P, Paige K T, Upton J, Vacanti C A.
Transplantation of chondrocytes utilizing a polymer cell construct to produce tissue
engineered cartilage in the shape of a human ear.
Plast Reconstr Surg.
1997;
100
297-304
4
Evans J F, Niu Q T, Canas J A, Shen C L, Aloia J F, Yeh J K.
ACTH enhances chondrogenesis in multipotential progenitor cells and matrix production
in chondrocytes.
Bone.
2004;
35
96-107
5
Fukumoto T, Sperling J W, Sanyal A, Fitzsimmons J S, Reinholz G G, Conover C A, O'Driscoll S W.
Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1
on periosteal mesenchymal cells during chondrogenesis in vitro.
Osteoarthritis Cartilage.
2003;
11
55-64
6
Langer R, Vacanti J P.
Tissue engineering.
Science.
1993;
260
920-926
7
Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y.
Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model.
Tissue Eng.
2006;
12
775-788
8
Liu W, Cui L, Cao Y.
A closer view of tissue engineering in China: the experience of tissue construction
in immunocompetent animals.
Tissue Eng.
2003;
9
S17-30
9
Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, Wang J, Cui Y, Yang G, Liu D, Wu J, Xu R,
Buonocore S D, Cao Y.
Repairing large porcine full-thickness defects of articular cartilage using autologous
chondrocyte-engineered cartilage.
Tissue Eng.
2002;
8
709-721
10
Mastrogiacomo M, Cancedda R, Quarto R.
Effect of different growth factors on the chondrogenic potential of human bone marrow
stromal cells.
Osteoarthritis Cartilage.
2001;
9
S36-S40
11
Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A,
Simonetti D W, Craig S, Marshak D R.
Multilineage potential of adult human mesenchymal stem cells.
Science.
1999;
284
143-147
12
Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y.
Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow
stromal cells.
J Craniofac Surg.
2001;
12
586-593
13
Vacanti C A, Kim W, Upton J, Vacanti M P, Mooney D, Schloo B, Vacanti J P.
Tissue-engineered growth of bone and cartilage.
Transplant Proc.
1993;
25
1019-1021
14
Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M.
Human autologous culture expanded bone marrow mesenchymal cell transplantation for
repair of cartilage defects in osteoarthritic knees.
Osteoarthritis Cartilage.
2002;
10
199-206
15
Weng Y, Wang M, Liu W, Hu X, Chai G, Yan Q, Zhu L, Cui L, Cao Y.
Repair of experimental alveolar bone defects by tissue engineered bone.
Tissue Eng.
2006;
12
1503-1513
16
Williams C G, Kim T K, Taboas A, Malik A, Manson P, Elisseeff J.
In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing
hydrogel.
Tissue Eng.
2003;
9
679-688
17
Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber R M, Ewerbeck V, Richter W.
Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison
of bone marrow-derived and adipose tissue-derived stromal cells.
Arthritis Rheum.
2003;
48
418-429
18
Yuan J, Cui L, Zhang W J, Liu W, Cao Y.
Repair of canine mandibular bone defects with bone marrow stromal cells and porous
beta-tricalcium phosphate.
Biomaterials.
2007;
28
1005-1013
19
Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y.
Repair of porcine articular osteochondral defects in non-weightbearing areas with
autologous bone marrow stromal cells.
Tissue Eng.
2006;
12
3209-3221
20
Zhu L, Liu W, Cui L, Cao Y.
Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone
marrow stromal cells.
Tissue Eng.
2006;
12
1369-1377
M.D. Yilin Cao
Department of Plastic and Reconstructive Surgery Shanghai 9th People's Hospital National Tissue Engineering Center of China Shanghai Jiao Tong University School of Medicine
639 Zhi Zao Ju Rd
Shanghai 200011
People's Republic of China
Email: yilincao@yahoo.com