Plant Biol (Stuttg) 2007; 9: e87-e98
DOI: 10.1055/s-2007-965247
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Effects of Species Composition, Land Surface Cover, CO2 Concentration and Climate on Isoprene Emissions from European Forests

A. Arneth1 , G. Schurgers1 , T. Hickler1 , P. A. Miller1
  • 1Department of Physical Geography and Ecosystems Analysis, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Further Information

Publication History

Received: November 3, 2006

Accepted: March 25, 2007

Publication Date:
07 August 2007 (online)

Abstract

Emissions of isoprene from terrestrial vegetation are known to affect atmospheric chemical properties, like its oxidation capacity or the concentration of tropospheric ozone. The latter is of concern, since besides being a potent greenhouse gas, O3 is toxic for humans, animals, and plants even at relatively low concentrations. Isoprene-emitting forests in the vicinity of NOx pollution sources (like cities) can contribute considerably to O3 formation, and to the peak concentrations observed during hot summer weather. The biogenic contribution to O3 concentrations is generally thought to increase in a future, warmer climate – pushing values beyond health thresholds possibly even more frequently and over larger areas – given that emissions of isoprene are highly temperature-dependent but also because of the CO2 fertilisation of forest productivity and leaf growth. Most projections of future emissions, however, do not include the possible CO2-inhibition of leaf isoprene metabolism. We explore the regional distribution of emissions from European woody vegetation, using a mechanistic isoprene-dynamic vegetation model framework. We investigate the interactive effects of climate and CO2 concentration on forest productivity, species composition, and isoprene emissions for the periods 1981 – 2000 and 2081 – 2100. Our projection of future emissions includes a direct CO2-isoprene inhibition. Across the model domain, we show that this direct effect has the potential to offset the stimulation of emissions that could be expected from warmer temperatures and from the increased productivity and leaf area of emitting vegetation. Changes in forest species composition that may result from climate change can play a substantial additional role in a region's future emissions. Changes in forest area or area planted in woody biofuels in general are not noticeable in the overall European forest isoprene budget, but – as was the case for changes in species composition – may substantially affect future projections in some regions of the continent.

References

  • 1 Amann M., Baldi M., Heyes C., Klimont Z., Schöpp W.. Integrated assessment of emission control scenarios including the impact of tropospheric ozone.  Water, Air and Soil Pollution. (1995);  85 2595-2600
  • 2 Arneth A., Miller P., Scholze M.. et al. .CO2 inhibition of leaf isoprene metabolisms offsets effect of increasing temperature and GPP fertilisation on global terrestrial emissions. Manuscript in review. (2007 a)
  • 3 Arneth A., Niinemets Ü., Pressley S.. et al. . Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction.  Atmospheric Chemistry and Physics. (2007 b);  7 31-53
  • 4 Badeck F. W., Lischke H., Bugmann H.. et al. . Tree species composition in European pristine forests: comparison of stand data to model predictions.  Climatic Change. (2001);  51 307-347
  • 5 Bell M., Ellis J. E.. Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region.  Atmospheric Environment. (2004);  38 1879-1889
  • 6 Bigelow N. H., Brubaker L. B., Edwards M. E.. et al. . Climate change and Arctic ecosystems. 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present.  Journal of Geophysical Research. (2003);  108 DOI: 10.1029/2002JD002558
  • 7 Cannell M. G. R.. World Forest Biomass and Primary Productivity Data. London; Academic Press (1982)
  • 8 Chameides W. L., Lindsay R. W., Richardson J., Kiang C. S.. The role of biogenic hydrocarbons in urban photochemical smog.  Science. (1988);  241 1-10
  • 9 Chapin III., F. S., Callaghan T. V., Bergeron Y.. et al. . Global change and the Boreal Forest: thresholds, shifting states or gradual change?.  AMBIO. (2004);  33 361-365
  • 10 Collins W. J., Stevenson D. S., Johnson C. E., Derwent R. G.. The European regional ozone distribution and its links with the global scale for the years 1992 and 2015.  Atmospheric Environment. (2000);  34 255
  • 11 Constable J. V. H., Guenther A. B., Schimel D. S., Monson R. K.. Modelling changes in VOC emission in response to climate change in the continental United States.  Global Change Biology. (1999);  5 791-806
  • 12 Derognat C., Beekmann M., Baeumle M., Martin D., Schmidt H.. Effect of biogenic volatile organic compound emissions on tropospheric chemistry during the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign in the Ile-de-France region.  Journal of Geophysical Research. (2003);  108 8560 DOI: 10.1029/2001JD001421
  • 13 Ericsson K., Nilsson L. J.. Assessment of the potential biomass supply in Europe using a resource-focused approach.  Biomass and Bioenergy. (2006);  30 1-15
  • 14 Farquhar G. D., von Caemmerer S., Berry J. A.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.  Planta. (1980);  149 78-90
  • 15 Filella I., Penuelas J.. Daily, weekly and seasonal relationships among VOCs, NOxx and O3 in a semi-urban area near Barcelona.  Journal of Atmospheric Chemistry. (2006);  54 189-201
  • 16 Fiore A. M., Horowitz L. W., Purves D. W.. et al. . Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States.  Journal of Geophysical Research. (2005);  110 D12303 DOI: 10.1029/2004JD005485
  • 17 Fuentes J. D., Wang D.. On the seasonality of isoprene emissions from a mixed temperate forest.  Ecological Applications. (1999);  9 1118-1131
  • 18 Geron C., Guenther A., Sharkey T. D., Arnts R. R.. Temporal variability in basal isoprene emission factor.  Tree Physiology. (2000);  20 799-805
  • 19 Goldstein A. H., Goulden M. L., Munger J. W., Wofsy S. C., Geron C. D.. Seasonal course of isoprene emissions from a midlatitude deciduous forest.  Journal of Geophysical Research. (1998);  103 31045-31056
  • 20 Guenther A., Hewitt C. N., Erickson D.. et al. . A global model of natural volatile organic compound emissions.  Journal of Geophysical Research. (1995);  100 8873-8892
  • 21 Guenther A., Karl T., Harley P.. et al. . Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).  Atmospheric Chemistry and Physics. (2006);  6 3181-3210
  • 22 Haxeltine A., Prentice I. C.. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types.  Global Biogeochemical Cycles. (1996);  10 693-709
  • 23 Hickler T., Smith B., Sykes M. T.. et al. . Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA.  Ecology. (2004);  85 519-530
  • 24 Hjelbrekke A.-G., Solberg S.. Ozone measurements 2000. In EMEP/CCC-Report 5/2002, http://www.nilu.no/projects/ccc/reports/cccr5-2002.pdf. Norwegian Institute for Air Research, Kjeller. (2002)
  • 25 Kellomäki S., Rouvinen I., Peltola H., Strandman H., Steinbrecher R.. Impact of global warming on the tree species composition of boreal forests in Finland and effects on emissions of isoprenoids.  Global Change Biology. (2001);  7 531-544
  • 26 Kesselmeier J., Staudt M.. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology.  Journal of Atmospheric Chemistry. (1999);  33 23-88
  • 27 Koca D., Smith B., Sykes M. T.. Modelling regional climate change effects on potential natural ecosystems in Sweden.  Climatic Change. (2006);  78 381-406 DOI: 10.1007/s10584-005-9030-1
  • 28 Kuiper L. C., Sikkema R., Stolp J. A. N.. Establishment needs for short rotation forestry in the EU to meet the goals of the commission's White Paper on renewable energy (November 1997).  Biomass and Bioenergy. (1998);  15 451
  • 29 Lathière J., Hauglustaine D. A., De Noblet-Ducoudré N.. Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model.  Geophysical Research Letters. (2005);  32 L20818 DOI: 10.1029/2005GL024164
  • 30 Lathière J., Hauglustaine D. A., Friend A.. et al. . Impact of climate variability and land use changes on global biogenic volatile organic compound emissions.  Atmospheric Chemistry and Physics. (2006);  6 2129-2146
  • 31 Martin M. J., Stirling C. M., Humphries S. W., Long S. P.. A process-based model to predict the effects of climatic change on leaf isoprene emission rates.  Ecological Modelling. (2000);  131 161-174
  • 33 McGuire A. D., Sitch S., Clein J. S.. et al. . Carbon balance of the terrestrial biosphere in the twentieth century: analysis of CO2, climate and land use effects with four process-based ecosystem models.  Global Biogeochemical Cycles. (2001);  15 183-206
  • 34 Monson R. K., Jaeger C. H., Adams W. W. I.. et al. . Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature.  Plant Physiology. (1992);  98 1175-1180
  • 35 Morales P., Hickler T., Rowell D. P., Smith B., Sykes M. T.. Changes in European ecosystem productivity and carbon balance driven by regional climate model output.  Global Change Biology. (2007);  13 108-122
  • 36 Niinemets U., Tenhunen J. D., Harley P. C., Steinbrecher R.. A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus.  Plant, Cell and Environment. (1999);  22 1319-1335
  • 37 Pell E. J., Schlagnhaufer C. D., Arteca R. N.. Ozone induced oxidative stress.  Physiology of Plants. (1997);  100 264-273
  • 38 Pétron G., Harley P., Greenberg J., Guenther A.. Seasonal temperature variations influence isoprene emission.  Geophysical Research Letters. (2001);  28 1707-1710
  • 39 Possell M., Hewitt N. C., Beerling D. J.. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants.  Global Change Biology. (2005);  11 60-69
  • 40 Pressley S., Lamb B., Westberg H.. et al. . Long-term isoprene flux measurements above a northern hardwood forest.  Journal of Geophysical Research. (2005);  110 D07301 DOI: 10.1029/2004JD005523
  • 41 Rosenstiel T. N., Potosnak M. J., Griffin K. L., Fall R., Monson R. K.. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem.  Nature. (2003);  421 256
  • 42 Rosenstiel T. N., Ebbets A. L., Khatri W. C., Fall R., Monson R. K.. Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of Isoprene emission rate.  Plant Biology. (2004);  6 12-21
  • 43 Rounsevell M. D. A., Reginster I., Araujo M. B.. et al. . A coherent set of future land use change scenarios for Europe.  Agriculture Ecosystems and Environment. (2006);  114 57-68
  • 44 Sanderson M. G., Jones C. D., Collins W. J., Johnson C. E., Derwent R. G.. Effect of climate change on isoprene emissions and surface ozone levels.  Geophysical Research Letters. (2003);  30 1936 DOI: 10.1029/2003GL017642
  • 45 Scholze M., Knorr W., Arnell N., Prentice I. C.. A climate change risk analysis for world ecosystems.  Proceedings of the National Academy of Sciences of the USA. (2006);  103 13116-13120
  • 46 Schröter D., Cramer W., Leemans R.. et al. . Ecosystem service supply and vulnerability to Global Change in Europe.  Science. (2005);  310 1333-1337
  • 47 Simpson D.. Biogenic emissions in Europe. 2. Implications of ozone control strategies.  Journal of Geophysical Research. (1995);  100 22891-22906
  • 48 Simpson D., Winiwarter W., Börjesson G.. et al. . Inventorying emissions from nature in Europe.  Journal of Geophysical Research. (1999);  104 8113-8152
  • 49 Sitch S., Smith B., Prentice I. C.. et al. . Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model.  Global Change Biology. (2003);  9 161-185
  • 50 Smith B., Prentice I. C., Sykes M. T.. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space.  Global Ecology and Biogeography. (2001);  10 621-637
  • 51 Solmon F., Sarrat C., Serca D., Tulet P., Rosset R.. Isoprene and monoterpenes biogenic emissions in France: modeling and impact during a regional pollution episode.  Atmospheric Environment. (2004);  38 3853-3865
  • 52 Sykes M. T., Prentice I. C., Cramer W.. A bioclimatic model for the potential distributions of north European tree species under present and future climates.  Journal of Biogeography. (1996);  23 203-233
  • 53 Tuck G., Glendining M. J., Smith P., House J. I., Wattenbach M.. The potential distribution of bioenergy crops in Europe under present and future climate.  Biomass and Bioenergy. (2006);  30 183-197
  • 54 Venendaal R., Jorgensen U., Foster C. A.. European energy crops: a synthesis.  Biomass and Bioenergy. (1997);  13 147
  • 55 Wiberley A. E., Linskey A. R., Falbel T. G., Sharkey T. D.. Development of the capacity for isoprene emission in kudzu.  Plant, Cell and Environment. (2005);  28 898-905
  • 56 Winiwarter W., Haberl H., Simpson D.. On the boundary between man-made and natural emissions: problems in defining European ecosystems.  Journal of Geophysical Research. (1999);  104 8153-8159

A. Arneth

Department of Physical Geography and Ecosystems Analysis
Lund University

Sölvegatan 12

223 62 Lund

Sweden

Email: almut.arneth@nateko.lu.se

Guest Editor: F. Loreto

    >