Subscribe to RSS
DOI: 10.1055/s-2007-964974
Georg Thieme Verlag Stuttgart KG · New York
Genetic Structure of Araucaria angustifolia (Araucariaceae) Populations in Brazil: Implications for the in situ Conservation of Genetic Resources
Publication History
Received: July 21, 2006
Accepted: January 12, 2007
Publication Date:
02 April 2007 (online)

Abstract
The distribution of the genetic variation within and among natural populations of A. angustifolia growing in different regions in Brazil was assessed at microsatellite and AFLP markers. Both markers revealed high gene diversity (H = 0.65; AR = 9.1 for microsatellites and H = 0.27; P = 77.8 % for AFLPs), moderate overall differentiation (RST = 0.13 for microsatellites and FST = 0.10 for AFLPs), but high divergence of the northernmost, geographically isolated population. In a Bayesian analysis, microsatellite data suggested population structure at two levels: at K = 2 and at K = 3 in agreement to the geographical distribution of populations. This result was confirmed by the UPGMA dendrogram based on microsatellite data (bootstrap support > 95 %). Non-hierarchical AMOVA revealed high variation among populations from different a posteriori defined geographical groups. The genetic distance between sample locations increased with geographical distance for microsatellites (r = 0.62; p = 0.003) and AFLPs (r = 0.32; p = 0.09). This pattern of population differentiation may be correlated with population history such as geographical isolation and postglacial colonization of highlands. Implications of the population genetic structure for the conservation of genetic resources are discussed.
Key words
AFLPs - Araucaria angustifolia - genetic diversity - genetic resources - microsatellites - population structure - population history.
References
- 1 Auler N. M. F., Reis M. S., Guerra M. P., Nodari R. O.. The genetics and conservation of Araucaria angustifolia. I. Genetic structure and diversity of natural populations by means of non-adaptive variation in the state of Santa Catarina, Brazil. Genetics and Molecular Biology. (2002); 25 329-338
-
2 Bawa K. S., Krugman S. L..
Reproductive biology and genetics of tropical trees in relation to conservation and management. Gomez-Pompa, A., Whitmore, T. C., and Hadley, M., eds. Rain Forest Regeneration and Management. Paris; UNESCO and Carnforth, The Parthenon Publishing Group (1990): 119-136 - 3 Behling H.. Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (South Brazil). Review of Paleobotany and Palynology. (1997); 97 109-121
- 4 Behling H.. Late Quaternary vegetational and climatic changes in Brazil. Review of Paleobotany and Palynology. (1998); 99 143-156
- 5 Behling H., Pillar V. D. P., Orlóci L., Bauermann S. G.. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeocology. (2004); 203 277-297
- 6 Bekessy S. A., Allnutt T. R., Premoli A. C., Lara A., Ennos R. A., Burgman M. A., Cortes M., Newton A. C.. Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity. (2002); 88 243-249
- 7 Brewer S., Cheddadi R., de Beaulieau J. L., Reille M.. The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management. (2002); 156 27-48
- 8 Cavalli-Sforza L. L., Edwards A. W. F.. Phylogenetic analysis: models and estimation procedures. Evolution. (1967); 32 550-570
- 9 Evanno G., Regnaut S., Goudet J.. Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology. (2005); 14 2611-2620
- 10 Excoffier L., Smouse P. E., Quattro J. M.. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. (1992); 131 479-491
- 11 Excoffier L., Laval G., Schneider S.. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online. (2005); 1 47-50
- 12 FAO .Forest Genetic Resource Conservation and Management, Vol. 1: Overview, Concepts and Some Systematic Approaches. Rome; IPGRI (2004)
-
13 Finkeldey R., Mátyás G..
Assessment of population history and adaptive potentials by means of gene markers. Mátyás, C., ed. Forest Genetics and Sustainability. Dordrecht; Kluwer (1999): 91-104 - 14 Finkeldey R., Hattemer H. H.. Tropical Forest Genetics. Berlin, Heidelberg; Springer (2007)
- 15 Gaudeul M., Till-Bottraud I., Barjon F., Manel S.. Genetic diversity and differentiation in Erygium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity. (2004); 92 508-518
- 16 Goodman S. J.. Rst Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Molecular Ecology. (1997); 6 881-885
- 17 Goudet J.. FSTAT: a program to estimate and test gene diversities and fixation indices (Version 2.9.3.2). Switzerland; University of Lausanne (2001)
-
18 Guerra M. P., Silveira V., Reis M. S., Schneider L..
Exploração, manejo e conservação da araucária (Araucaria angustifolia). Simões, L. L. and Lino, C. F., eds. Sustenável mata atlântica: a exploração de seus recursos florestais. São Paulo; Editora SENAC (2002): 85-101 - 19 Inoue M. T., Galvão F., Torres D. V.. Estudo ecofisiológico sobre Araucaria angustifolia (Bert.) O. Ktze.: fotossíntese em dependência à luz no estágio juvenil. Floresta. (1979); 10 5-9
- 20 Inoue M. T., Torres D. V.. Comportamento do crescimento de mudas de Araucaria angustifolia (Bert.) O. Ktze. Em dependência da intensidade luminosa. Floresta. (1980); 11 7-11
- 21 Kageyama P. Y., Jacob W. S.. Variação genética entre e dentro de progênies de uma população de Araucaria angustifolia (Bert.) O. Ktze. IUFRO Meeting on Forestry Problems of the Genus Araucaria . Curitiba, Brazil; (1980): 83-86
- 22 Kraus S. L.. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Molecular Ecology. (2000); 9 1241-1245
- 23 Langella O.. Populations (Version 1.2.28). France; Centre National de la Recherche Scientifique (2002)
- 24 Ledru M.-P., Salgado-Labouriau M. L., Lorscheitter M. L.. Vegetation dynamics in southern and central Brazil during the last 10 000 yr B.P. Review of Paleobotany and Palynology. (1998); 99 131-142
- 25 Lynch M., Milligan B. G.. Analysis of population genetic structure with RAPD markers. Molecular Ecology. (1994); 3 91-99
- 27 Mariette S., Le Corre V., Austerlitz F., Kremer A.. Sampling within the genome for measuring within-population diversity: trade-offs between markers. Molecular Ecology. (2002); 11 1145-1156
- 28 Moritz C., Faith D. P.. Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular Ecology. (1998); 7 419-430
- 29 Nascimento de Sousa S., Finkeldey R., Gailing O.. Experimental verification of microsatellite null alleles in Norway spruce (Picea abies [L.] Karst.): implications for population genetic studies. Plant Molecular Biology Reporter. (2005); 23 113-119
- 30 National Research Council .Managing Global Genetic Resources: Forest Trees. Washington; National Academy Press (1991): 73-98
- 31 Nei M.. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the USA. (1973); 70 3321-3323
- 32 Nybom H.. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology. (2004); 13 1143-1155
- 33 Peakall R., Ebert D., Scott L. J., Meagher P. F., Offord C. A.. Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology. (2003); 12 2331-2343
- 34 Perry D. J., Knowles P.. Evidence of high self-fertilization in natural populations of eastern white cedar (Thuja occidentalis). Canadian Journal of Botany. (1990); 68 663-668
- 35 Petit R. J., El Mousadik A., Pons O.. Identifying populations for conservation on the basis of genetic markers. Conservation Biology. (1998); 12 844-855
- 36 Phartyal S. S., Thapliyal R. C., Koedam N., Godefroid S.. Ex situ conservation of rare and valuable forest tree species through seed-gene bank. Current Science. (2002); 83 1351-1357
- 37 Pritchard J. K., Stephens M., Donnely P.. Inference of population structure using multilocus genotype data. Genetics. (2000); 155 945-959
- 38 Pye M. G., Gadek P. A.. Genetic diversity, differentiation and conservation in Araucaria bidwillii (Araucariaceae), Australia's Bunya pine. Conservation Genetics. (2004); 5 619-629
- 39 Reitz P. R., Klein R. M.. Araucariaceae: Flora ilustrada catarinense. Itajaí; Herbário Barbosa Rodrigues (1966): 21-24
- 40 Rohlf F. J.. NTSYS‐pc: numerical taxonomy and multivariate analysis system (Version 2.0). USA; State University of New York (1998)
- 41 Salgueiro F., Caron H., de Souza M. I. F., Kremer A., Margis R.. Characterization of nuclear microsatellite loci in South American Araucariaceae species. Molecular Ecology Notes. (2005); 5 256-258
- 42 Schuelke M.. An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology. (2000); 18 233-234
- 43 Scott L. J., Shepherd M., Henry R. J.. Characterization of highly conserved microsatellites loci in Araucaria cunninghamii and related species. Plant Systematics and Evolution. (2003); 236 115-123
- 44 Setoguchi H., Osawa T. A., Pintaud J.-C., Jaffré T., Veillon J.-M.. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany. (1998); 85 1507-1516
- 45 Shimizu J. Y., Higas A. R.. Variação genética entre procedências de Araucaria angustifolia (Bert.) O. Ktze. na região de Itapeva-SP, estimada até o 6.° ano de idade. IUFRO Meeting on Forestry Problems of the Genus Araucaria . Curitiba, Brazil; (1980): 78-82
- 46 Slatkin M.. A measure of population division based on microsatellite allele frequencies. Genetics. (1995); 139 457-462
- 47 Soares R. V.. Considerações sobre a regeneração natural da Araucaria angustifolia. Floresta. (1979); 10 12-18
- 48 Sousa V. A., Hattemer H. H.. Pollen dispersal and gene flow by pollen in Araucaria angustifolia. Australian Journal of Botany. (2003); 51 309-317
- 49 Sousa V. A., Robinson I. P., Hattemer H. H.. Variation and population structure at enzyme gene loci in Araucaria angustifolia (Bert.) O. Ktze. Silvae Genetica. (2004); 53 12-19
- 50 Sousa V. A., Sebbenn A. M., Hattemer H. H., Ziehe M.. Correlated mating in populations of a dioecious Brazilian conifer, Araucaria angustifolia (Bert.) O. Ktze. Forest Genetics. (2005); 12 107-119
- 51 Stefenon V. M., Gailing O., Finkeldey R.. Phylogenetic relationship within genus Araucaria (Araucariaceae) assessed by means of AFLP fingerprints. Silvae Genetica. (2006); 55 45-52
- 52 Vekemans X.. AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium. (2002)
- 53 Vos P., Hogers R., Bleeker M., Reijans M., Vandelee T., Hornes M., Fritjers A., Pot J., Peleman J., Kuiper M., Zabeau M.. AFLP: a new technique for DNA fingerprinting. Nucleic Acid Research. (1995); 23 4407-4414
- 54 Zhivotovsky L. A.. Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecology. (1999); 8 907-913
- 55 Weir B. S., Cockerham C. C.. Estimating F-statistics for the analysis of population structure. Evolution. (1984); 38 1358-1370
V. M. Stefenon
Institute of Forest Genetics and Forest Tree Breeding
Georg August University Göttingen
Büsgenweg 2
37077 Göttingen
Germany
Email: gene_mol@yahoo.com.br
Editor: H. de Kroon