Subscribe to RSS
DOI: 10.1055/s-2007-963673
© Georg Thieme Verlag KG Stuttgart · New York
NAT1 Genotypes Do not Predict Response to Mesalamine in Patients with Ulcerative Colitis
NAT1-Genotypen erlauben keine Vorhersage für das Ansprechen auf Mesalamin bei Patienten mit Colitis ulcerosaPublication History
manuscript received: 14.5.2007
manuscript accepted: 16.10.2007
Publication Date:
06 March 2008 (online)

Zusammenfassung
Hintergrund: Die 5-Aminosalicylsäure (5-ASA) wird in der Darmmukosa von der N-Acetyltransferase 1 (NAT1) metabolisiert. Durch bekannte genetische Polymorphismen in diesem Enzym kommt es zu einer schnellen oder langsamen Acetylierung. Bei etwa 10 % der Patienten mit Colitis ulcerosa (CU) verursacht die Behandlung mit 5-ASA Nebenwirkungen. Wir haben daher die genetischen Variationen bei Patienten mit CU bestimmt und deren mögliche Assoziation mit dem klinischen Ansprechen auf 5-ASA untersucht. Methoden: Von 78 Patienten mit CU wurde DNA gewonnen. 77 % der Patienten befanden sich während der 5-ASA-Behandlung in Remission, 23 % litten an einem akuten Schub. Für 23 bekannte Allele wurde NAT1 mithilfe von RFLP-Untersuchungen und DANN-Sequenzierung genotypisiert. Retrospektiv wurde das dokumentierte klinische Ansprechen auf 5-ASA ermittelt und mit den NAT1-Genotypen korreliert. Ergebnisse: Mithilfe der PCR wurde eine 570-bp umfassende Region aus dem kodierenden Bereich und 240 bp aus der 3′-untranslatierten Region (UTR) des humanen NAT1-Gens amplifiziert. Dabei wurden die 4 bereits bekannten NAT1-Allele NAT1*3, *4, *10 und *11 gefunden. 31 % der Patienten waren heterozygot und 4 % homozygot für das NAT1*10-Allel. 6 % der Patienten waren heterozygot für das NAT1*3-Allel. 6 % waren heterozygot für das NAT1*11-Allel. Zwischen dem NAT1-Genotyp und dem klinischen Ansprechen beziehungsweise den Nebenwirkungen wurden keine Assoziationen gefunden. Schlussfolgerung: Die NAT1-Genotypen erlauben keine Vorhersage für das klinische Ansprechen von Patienten mit CU auf Mesalamin oder zu erwartende Nebenwirkungen. Das Ansprechen auf 5-ASA könnte daher auch durch nicht genomische Effekte beeinflusst werden.
Abstract
Background: 5- Aminosalicylic acid (5-ASA) is metabolised in colonic mucosa by N-acetyltransferase 1 (NAT1). Common genetic polymorphisms in this enzyme result in rapid or slow acetylation. 5-ASA treatment causes side effects in up to 10 % of patients with ulcerative colitis (UC). We therefore determined genetic variations of NAT1 in patients with UC and looked for a possible association with the clinical response to 5-ASA. Methods: DNA was obtained from 78 patients with UC. 77 % of the patients were in remission during 5-ASA treatment, whereas 23 % suffered from active disease. NAT1 genotyping was performed for 23 known alleles using RFLP and sequence analysis. Clinical response to 5-ASA was determined by medical record review and associated with NAT1 genotypes. Results: Utilising PCR we amplified a 570-bp coding region of the human NAT1 gene in addition to 240 bp in the 3′-untranslated region (UTR). 4 NAT1 alleles previously known as NAT1*3, *4, *10 and *11 were recovered. 31 % of the patients were heterozygous and 4 % homozygous for the NAT1*10 allele. 6 % were heterozygous for the NAT1*3 allele. 6 % were heterozygous for the NAT1*11 allele. No association was found between NAT1 genotype and clinical response as well as side effects to 5-ASA in patients with UC. Conclusions: NAT1 genotypes do not predict response or side effects to mesalamine in patients with UC. Variations caused by non-genomic effects may be associated with the clinical response to 5-ASA.
Schlüsselwörter
Colitis ulcerosa - Morbus Crohn - intestinale Komplikation
Key words
ulcerative colitis - Crohn’s disease - intestinal complications
References
- 1
Small R E, Schraa C C.
Chemistry, pharmacology, pharmacokinetics, and clinical applications of mesalamine
for the treatment of inflammatory bowel disease.
Pharmacotherapy.
1994;
14
385-398
MissingFormLabel
- 2 Easterbrook J, Armstrong G, Bayless T M. et al .Pharmacogenetics of 5ASA metabolism in IBD patients: Preliminary report of variation
in N-acetyltransferase polymorphisms and 5ASA metabolism rates in mucosal biopsies. Annual Meeting of American Gastroenterological Association New Orleans Philadelphia; W B Saunder Company 1998
MissingFormLabel
- 3
Zhou S Y, Fleisher D, Pao L H. et al .
Intestinal metabolism and transport of 5-aminosalicylate.
Drug Metab Dispos.
1999;
27 (4)
479-485
MissingFormLabel
- 4
Jenne J W.
Partial purification and properties of the isoniazid transacetylase in human liver.
Its relationship to the acetylation of p-aminosalicylic acid.
J Clin Invest.
1965;
44 (12)
1992-2002
MissingFormLabel
- 5
Ilett K F, Ingram D M, Carpenter D S. et al .
Expression of monomorphic and polymorphic N-acetyltransferases in human colon.
Biochem Pharmacol.
1994;
47 (5)
914-917
MissingFormLabel
- 6
Hein D W, Doll M A, Rustan T D. et al .
Metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by 16 recombinant
human NAT2 allozymes: effects of 7 specific NAT2 nucleic acid substitutions.
Cancer Res.
1995;
55 (16)
3531-3536
MissingFormLabel
- 7
Bell D A, Badawi A F, Lang N P. et al .
Polymorphism in the N-acetyltransferase 1 (NAT1) polyadenylation signal: association
of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue.
Cancer Res.
1995;
55 (22)
5226-5229
MissingFormLabel
- 8
Windmill K F, Gaedigk A, Hall P M. et al .
Localization of N-acetyltransferases NAT1 and NAT2 in human tissues.
Toxicol Sci.
2000;
54 (1)
19-29
MissingFormLabel
- 9
Debiec-Rychter M, Land S J, King C M.
Histological localization of acetyltransferases in human tissue.
Cancer Lett.
1999;
143 (2)
99-102
MissingFormLabel
- 10
Hickman D, Pope J, Patil S D. et al .
Expression of arylamine N-acetyltransferase in human intestine.
Gut.
1998;
42 (3)
402-409
MissingFormLabel
- 11
Christensen L A, Fallingborg J, Abildgaard K. et al .
Topical and systemic availability of 5-aminosalicylate: comparisons of three controlled
release preparations in man.
Aliment Pharmacol Ther.
1990;
4 (5)
523-533
MissingFormLabel
- 12
Larouche J, Morais J, Picard M. et al .
Release of 5-ASA from Pentasa in patients with Crohn’s disease of the small intestine.
Aliment Pharmacol Ther.
1995;
9 (3)
315-320
MissingFormLabel
- 13
Layer P H, Goebell H, Keller J. et al .
Delivery and fate of oral mesalamine microgranules within the human small intestine.
Gastroenterology.
1995;
108
1427-1433
MissingFormLabel
- 14
Yu D K, Morrill B, Eichmeier L S. et al .
Pharmacokinetics of 5-aminosalicylic acid from controlled-release capsules in man.
Eur J Clin Pharmacol.
1995;
48 (3 - 4)
273-277
MissingFormLabel
- 15
Deguchi T, Mashimo M, Suzuki T.
Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase
in human liver.
J Biol Chem.
1990;
265 (22)
12 757-12 760
MissingFormLabel
- 16
Butcher N J, Ilett K F, Minchin R F.
Functional polymorphism of the human arylamine N-acetyltransferase type 1 gene caused
by C 190T and G 560A mutations.
Pharmacogenetics.
1998;
8 (1)
67-72
MissingFormLabel
- 17
Bruhn C, Brockmoller J, Cascorbi I. et al .
Correlation between genotype and phenotype of the human arylamine N-acetyltransferase
type 1 (NAT1).
Biochem Pharmacol.
1999;
58 (11)
1759-1764
MissingFormLabel
- 18
Payton M A, Sim E.
Genotyping human arylamine N-acetyltransferase type 1 (NAT1): the identification of
two novel allelic variants.
Biochem Pharmacol.
1998;
55 (3)
361-366
MissingFormLabel
- 19
Weber W W, Vatsis K P.
Individual variability in p-aminobenzoic acid N-acetylation by human N-acetyltransferase
(NAT1) of peripheral blood.
Pharmacogenetics.
1993;
3 (4)
209-212
MissingFormLabel
- 20
Hein D W, Rustan T D, Ferguson R J. et al .
Metabolic activation of aromatic and heterocyclic N-hydroxyarylamines by wild-type
and mutant recombinant human NAT1 and NAT2 acetyltransferases.
Arch Toxicol.
1994;
68 (2)
129-133
MissingFormLabel
- 21
Allgayer H, Ahnfelt N O, Kruis W. et al .
Colonic N-acetylation of 5-aminosalicylic acid in inflammatory bowel disease.
Gastroenterology.
1989;
97 (1)
38-41
MissingFormLabel
- 22
Vatsis K P, Weber W W, Bell D A. et al .
Nomenclature for N-acetyltransferases.
Pharmacogenetics.
1995;
5 (1)
1-17
MissingFormLabel
- 23
Grant D M, Blum M, Beer M. et al .
Monomorphic and polymorphic human arylamine N-acetyltransferases: a comparison of
liver isozymes and expressed products of two cloned genes.
Mol Pharmacol.
1991;
39 (2)
184-191
MissingFormLabel
- 24
Ozawa S, Abu-Zeid M, Kawakubo Y. et al .
Monomorphic and polymorphic isozymes of arylamine N-acetyltransferases in hamster
liver: purification of the isozymes and genetic basis of N-acetylation polymorphism.
Carcinogenesis.
1990;
11 (12)
2137-2144
MissingFormLabel
- 25
Hughes N C, Janezic S A, McQueen K L. et al .
Identification and characterization of variant alleles of human acetyltransferase
NAT1 with defective function using p-aminosalicylate as an in-vivo and in-vitro probe.
Pharmacogenetics.
1998;
8 (1)
55-66
MissingFormLabel
- 26
Schreiber S, Hamling J, Zehnter E. et al .
Renal tubular dysfunction in patients with inflammatory bowel disease treated with
aminosalicylate.
Gut.
1997;
40 (6)
761-766
MissingFormLabel
- 27
Ricart E, Taylor W R, Loftus E V. et al .
N-acetyltransferase 1 and 2 genotypes do not predict response or toxicity to treatment
with mesalamine and sulfasalazine in patients with ulcerative colitis.
Am J Gastroenterol.
2002;
97 (7)
1763-1768
MissingFormLabel
- 28
Hein D W, McQueen C A, Grant D M. et al .
Pharmacogenetics of the arylamine N-acetyltransferases: a symposium in honor of Wendell
W. Weber.
Drug Metab Dispos.
2000;
28 (12)
1425-1432
MissingFormLabel
- 29
Sim E, Payton M, Noble M. et al .
An update on genetic, structural and functional studies of arylamine N-acetyltransferases
in eucaryotes and procaryotes.
Hum Mol Genet.
2000;
9 (16)
2435-2441
MissingFormLabel
- 30
Deitz A C, Doll M A, Hein D W.
A restriction fragment length polymorphism assay that differentiates human N-acetyltransferase-1
(NAT1) alleles.
Anal Biochem.
1997;
253 (2)
219-224
MissingFormLabel
- 31
Rasmussen S N, Bondesen S, Hvidberg E F. et al .
5-aminosalicylic acid in a slow-release preparation: bioavailability, plasma level,
and excretion in humans.
Gastroenterology.
1982;
83
1062-1070
MissingFormLabel
- 32
Leon J H, Vatsis K P, Weber W W.
Characterization of naturally occurring and recombinant human N-acetyltransferase
variants encoded by NAT1.
Mol Pharmacol.
2000;
58 (2)
288-299
MissingFormLabel
- 33
Hein D W, Doll M A, Fretland A J. et al .
Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms.
Cancer Epidemiol Biomarkers Prev.
2000;
9 (1)
29-42
MissingFormLabel
- 34
Cascorbi de I, Roots I, Brockmoller J.
Association of NAT1 and NAT2 polymorphisms to urinary bladder cancer: significantly
reduced risk in subjects with NAT1*10.
Cancer Res.
2001;
61 (13)
5051-5056
MissingFormLabel
Dr. Martin Hausmann
Abteilung für Gastroenterologie und Hepatologie, UniversitätsSpital Zürich
Rämisstrasse 100
8091 Zürich
Email: martin.hausmann@usz.ch