Subscribe to RSS
DOI: 10.1055/s-2007-959224
© Georg Thieme Verlag Stuttgart · New York
Angeborene Immunität - Speziesvergleich und Ontogenese
Publication History
Publication Date:
14 June 2007 (online)

Das angeborene Immunsystem
Die Abwehr pathogener Mikroorganismen erfolgt bei Vertebraten durch das angeborene und das adaptive Immunsystem [1] [2]. Zu den Hauptkomponenten des angeborenen Immunsystems gehört neben der Schutzfunktion des Epithels [3] [4] die Mobilisierung und Aktivierung von Leukozyten und die Freisetzung und Aktivierung löslicher Effektoren, die direkt zur Abwehr von Pathogenen beitragen [5] oder das adaptive Immunsystem stimulieren [8].
Das angeborene Immunsystem umfasst neben der Barrierefunktion des Epithels und zellulärer Bestandteile eine Vielzahl löslicher antimikrobieller Faktoren, die entweder chemischer Natur (z. B. Wasserstoff-Peroxid oder Stickoxid) oder als antimikrobielle Proteine genetisch kodiert sind [9]. Das Epithel hat bei der Abwehr pathogener und allergener Substanzen eine aktive und eine passive Funktion. Zu der passiven Funktion gehört die Aufrechterhaltung einer physikalischen Barriere, die es durch den geschlossenen Zellverband und eine apikale Schutzschicht bildet. Mithilfe spezialisierter Epithelzellen und einem Film aus Flüssigkeit und Schleim wird für den Abtransport eingedrungener Pathogene gesorgt. Der aktive Schutz besteht in der Abgabe antimikrobieller Proteine in das Lumen der Atemwege und in der Sekretion proinflammatorischer Zytokine in den submukosalen Bereich [10].
Literatur
- 1
Hoffmann J A, Kafatos F C, Janeway C A. et al .
Phylogenetic perspectives in innate immunity.
Science.
1999;
284
1313-1318
MissingFormLabel
- 2
Medzhitov R, Janeway Jr C A.
Innate immunity: the virtues of a nonclonal system of recognition.
Cell.
1997;
91
295-298
MissingFormLabel
- 3
Diamond G, Legarda D, Ryan L K.
The innate immune response of the respiratory epithelium.
Immunol Rev.
2000;
173
27-38
MissingFormLabel
- 4
Whitsett J A.
Intrinsic and innate defenses in the lung: intersection of pathways regulating lung
morphogenesis, host defense, and repair.
J Clin Invest.
2002;
109
565-569
MissingFormLabel
- 5
Ganz T, Lehrer R I.
Antimicrobial peptides of vertebrates.
Curr Opin Immunol.
1998;
10
41-44
MissingFormLabel
- 6
Lehrer R I, Ganz T.
Antimicrobial peptides in mammalian and insect host defence.
Curr Opin Immunol.
1999;
11
23-27
MissingFormLabel
- 7
Bastian A, Schafer H.
Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro.
Regul Pept.
2001;
101
157-161
MissingFormLabel
- 8
Medzhitov R, Janeway Jr C A.
Innate immunity: impact on the adaptive immune response.
Curr Opin Immunol.
1997;
9
4-9
MissingFormLabel
- 9
Yang D, Biragyn A, Hoover D M. et al .
Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin
in host defense.
Annu Rev Immunol.
2004;
22
181-215
MissingFormLabel
- 10
Bals R, Hiemstra P S.
Innate immunity in the lung: how epithelial cells fight against respiratory pathogens.
Eur Respir J.
2004;
23
327-333
MissingFormLabel
- 11
Ganz T, Selsted M E, Szklarek D. et al .
Defensins. Natural peptide antibiotics of human neutrophils.
J Clin Invest.
1985;
76
1427-1435
MissingFormLabel
- 12
Lehrer R I, Selsted M E, Szklarek D. et al .
Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide
antibiotics of rabbit lung macrophages.
Infect Immun.
1983;
42
10-14
MissingFormLabel
- 13
Schonwetter B S, Stolzenberg E D, Zasloff M A.
Epithelial antibiotics induced at sites of inflammation.
Science.
1995;
267
1645-1648
MissingFormLabel
- 14
Bowes D, Clark A E, Corrin B.
Ultrastructural localisation of lactoferrin and glycoprotein in human bronchial glands.
Thorax.
1981;
36
108-115
MissingFormLabel
- 15
Dohrman A, Tsuda T, Escudier E. et al .
Distribution of lysozyme and mucin (MUC2 and MUC3) mRNA in human bronchus.
Exp Lung Res.
1994;
20
367-380
MissingFormLabel
- 16
Bals R, Wilson J M.
Cathelicidins - a family of multifunctional antimicrobial peptides.
Cell Mol Life Sci.
2003;
60
711-720
MissingFormLabel
- 17
Zasloff M.
Antimicrobial peptides of multicellular organisms.
Nature.
2002;
415
389-395
MissingFormLabel
- 18
Selsted M E, Harwig S S.
Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized
peptide.
J Biol Chem.
1989;
264
4003-4007
MissingFormLabel
- 19
Zimmermann G R, Legault P, Selsted M E. et al .
Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the
beta-defensins is identical to that of the classical defensins.
Biochemistry.
1995;
34
13 663-13 671
MissingFormLabel
- 20
Tang Y Q, Yuan J, Osapay G. et al .
A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two
truncated alpha-defensins.
Science.
1999;
286
498-502
MissingFormLabel
- 21
Hoover D M, Chertov O, Lubkowski J.
The structure of human beta-defensin-1: new insights into structural properties of
beta-defensins.
J Biol Chem.
2001;
276
39 021-39 026
MissingFormLabel
- 22
Zhang X L, Selsted M E, Pardi A.
NMR studies of defensin antimicrobial peptides. 1. Resonance assignment and secondary
structure determination of rabbit NP-2 and human HNP-1.
Biochemistry.
1992;
31
11 348-11 356
MissingFormLabel
- 23
Bauer F, Schweimer K, Kluver E. et al .
Structure determination of human and murine beta-defensins reveals structural conservation
in the absence of significant sequence similarity.
Protein Sci.
2001;
10
2470-2479
MissingFormLabel
- 24
Schibli D J, Hunter H N, Aseyev V. et al .
The solution structures of the human beta-defensins lead to a better understanding
of the potent bactericidal activity of HBD3 against Staphylococcus aureus.
J Biol Chem.
2002;
277
8279-8289
MissingFormLabel
- 25
Schibli D J, Hunter H N, Aseyev V. et al .
The solution structures of the human beta-defensins lead to a better understanding
of the potent bactericidal activity of HBD3 against Staphylococcus aureus.
J Biol Chem.
2002;
277
8279-8289
MissingFormLabel
- 26
Sawai M V, Jia H P, Liu L. et al .
The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment.
Biochemistry.
2001;
40
3810-3816
MissingFormLabel
- 27
Sparkes R S, Kronenberg M, Heinzmann C. et al .
Assignment of defensin gene(s) to human chromosome 8p23.
Genomics.
1989;
5
240-244
MissingFormLabel
- 28
Liu L, Zhao C, Heng H H. et al .
The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide
families with differing disulfide topology share a common ancestry.
Genomics.
1997;
43
316-320
MissingFormLabel
- 29
Harder J, Siebert R, Zhang Y. et al .
Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1.
Genomics.
1997;
46
472-475
MissingFormLabel
- 30
Langrish C L, Buddle J C, Thrasher A J. et al .
Neonatal dendritic cells are intrinsically biased against Th-1 immune responses.
Clin Exp Immunol.
2002;
128
118-123
MissingFormLabel
- 31
Lawton A R.
Ontogeny of B cells and pathogenesis of humoral immunodeficiencies.
Clin Immunol Immunopathol.
1986;
40
5-12
MissingFormLabel
- 32
Suen Y, Lee S M, Qian J. et al .
Dysregulation of lymphokine production in the neonate and its impact on neonatal cell
mediated immunity.
Vaccine.
1998;
16
1369-1377
MissingFormLabel
- 33
Levy O, Martin S, Eichenwald E. et al .
Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permeability-increasing
protein.
Pediatrics.
1999;
104
1327-1333
MissingFormLabel
- 34
Levy O, Martin S, Eichenwald E. et al .
Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permeability-increasing
protein.
Pediatrics.
1999;
104
1327-1333
MissingFormLabel
- 35
Salzman N H, Polin R A, Harris M C. et al .
Enteric defensin expression in necrotizing enterocolitis.
Pediatr Res.
1998;
44
20-26
MissingFormLabel
- 36
Mallow E B, Harris A, Salzman N. et al .
Human enteric defensins. Gene structure and developmental expression.
J Biol Chem.
1996;
271
4038-4045
MissingFormLabel
- 37
Buhimschi I A, Jabr M, Buhimschi C S. et al .
The novel antimicrobial peptide beta3-defensin is produced by the amnion: A possible
role of the fetal membranes in innate immunity of the amniotic cavity.
Am J Obstet Gynecol.
2004;
191
1678-1687
MissingFormLabel
- 38
Starner T D, Agerberth B, Gudmundsson G H. et al .
Expression and activity of beta-defensins and LL-37 in the developing human lung.
J Immunol.
2005;
174
608-1615
MissingFormLabel
- 39
Schaller-Bals S, Schulze A, Bals R.
Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants
during infection.
Am J Respir Crit Care Med.
2002;
165
992-995
MissingFormLabel
- 40
Yoshio H, Tollin M, Gudmundsson G H. et al .
Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications
for newborn innate defense.
Pediatr Res.
2003;
53
211-216
MissingFormLabel
- 41
Marchini G, Lindow S, Brismar H. et al .
The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics
are present in the skin and vernix caseosa.
Br J Dermatol.
2002;
147
1127-1134
MissingFormLabel
- 42
Murakami M, Dorschner R A, Stern L J. et al .
Expression and Secretion of Cathelicidin Antimicrobial Peptides in Murine Mammary
Glands and Human Milk.
Pediatr Res.
2005;
57
10-15
MissingFormLabel