Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2007; 17(3): 127-132
DOI: 10.1055/s-2007-940130
Wissenschaft und Forschung

© Georg Thieme Verlag KG Stuttgart · New York

Einfluss eines frühen sensomotorischen Trainings auf die Erholung neuromotorischer Funktion nach experimentellem Schädel-Hirn-Trauma

The Recovery of Neuromotor Functions and the Influence of Early Sensomotorical Training after Experimental Traumatic Brain InjuryM. Lippert-Grüner 3 [*] , M. Mägele 1 , 2 , D. N. Angelov 4
  • 1Biochemische und Experimentelle Abteilung, Medizinische Fakultät der Universität zu Köln (Prof. E. Neugebauer)
  • 2Chirurgische Klinik der Universität zu Witten-Herdecke, Klinikum Köln-Merheim (Prof. B. Bouillon)
  • 3Klinik für Neurochirurgie der Universität zu Köln (Prof. N. Klug)
  • 4Institut I für Anatomie der Universität zu Köln (Prof. W. Neiss)
Further Information

Publication History

eingereicht: 20. 1. 2006

angenommen: 29. 8. 2006

Publication Date:
11 June 2007 (online)

Zusammenfassung

In der hier vorgestellten Studie wird der Einfluss einer frühen sensomotorischen Förderung (Rehabilitationsmodell) nach standardisiertemtierexperimentellen Schädel-Hirn-Trauma (Fluid-Percussion-Modell) auf neuromotorische Fähigkeiten untersucht. Die Untersuchungen wurden an männlichen erwachsenen Sprague-Dawley(SD)-Ratten durchgeführt. 24 Stunden nach Trauma wurden die Tiere randomisiert in zwei Testgruppen (Standard housing/Rehabilitationsmodell) eingeteilt wo sie bis zum Ende der Beobachtungszeiten (15 und 30 Tage) gehalten wurden. Die Baseline für die neuromotorische Testung (Testbatterie Neuroscore) wurde 24 Stunden vor Trauma erhoben, die Überprüfung der motorischen Erholung 24 Stunden, 7, 15 und 30 Tage nach Trauma vorgenommen. Die Ergebnis-se zeigen, dass die Rehabilitationsmodellgruppe im Vergleich zu der Standard-housing-Gruppe sowohl 15 als auch 30 Tage nach Trauma signifikant besser abschneidet (p<0,05).

Abstract

The study was designed to determine the influence of exposure to early sensomotorical training as a model of the early rehabilitative treatment after traumatic brain injury for the recovery of neuromotor functions. Male Sprague-Dawley rats were subjected to lateral fluid percussion brain injury. After trauma, one group of the animals were placed under conditions of standard housing, and the second portion of rats underwent an early sensomotorical training (rehabilitation model). Assessment of neuromotor deficits with a standardized composite neuroscore test revealed an almost identical pattern of neurological impairment in all animals subjected to LFP 24 h post-lesion. 15 days post-lesion as well as 30 days post lesion, the rehabilitation model rats performed significantly better than the standard housing rats (p<0,05), indicating a better recovery of neuromotorical functions.

Literatur

  • 1 Greenough WT, Chang FL.. Dendritic pattern formation, involves both oriented and regression, oriented growth in the barrels of mouse so matosensory, cortex.  Brain research. 1988;  471 ((1)) 148-152
  • 2 Bland ST, Schallert T, Strong R, Aronowski J, Grotla JC, Feeney DM.. Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats: Functional and anatomic outcome.  Stroke. 200;  31 1144-1152
  • 3 Nudo R, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex.  Muscle Nerve. 2001;  24 1000-1019
  • 4 Xerri C, Marzenich MM, Peterson BE, Jenkins WM. Plasticity of prima ry somato-sensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys.  J Neurophys. 1998;  79 2119-2148
  • 5 Biernaskie J, Chernenko G, Corbett D. Efficacy of Rehabilitative Experience Declines with after Focal Ischemic Brain Injury.  The Journal of Neuroscience. 2004;  24 ((5)) 1245-1254
  • 6 Puurunen K, Koistinaho J, SirviöJ, Jolkkonen J, Sivenius J. Enriched-en-vironment housing increases neuronal Fos-staining, in the dentate gyrus after a water maze spatial learning task.  Neuropharmacology. 2001;  40 ((3)) 440-447
  • 7 Kozlowski DA, James DC, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions.  J Neurosci. 1996;  16 4776-4786
  • 8 Risedal A, Zeng J, Johansson B. Early training may exacerbate brain damage after focal brain ischemia in the rat.  J Cereb Blood Flow Metab. 1999;  19 997-1003
  • 9 Bland ST, Pillai RN, Aronowski J, Grotta JC, Schallert T. Early overuse and disuse of the affected fore limb after moderately severe intraluminal suture occlusion of the middle cerebral artery in rats.  Behav Brain Res. 2001;  126 33-41
  • 10 Humm JL, Kozlowski DA, James DC, Gotts JE, Schallert T.. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period.  Brain Res. 1998;  783 286-292
  • 11 Humm JL, Kozlowski DA, Bland ST, James DC, Schallert T. Progressive expansion of brain injury by extreme behavioral pressure: Is glutamate involved?.  Exp Neurol. 1999;  157 349-358
  • 12 Maegele M, Lippert-Gruener M, Ester-Bode T, Garbe J, Bouillon B, Neugebauer E, Klug N, Neiss W, Angelov D.. Multimodal early onset stimulation combined with Enriched environment is associated with reduced CNS scar formation and enhanced Reversal of neuromotor dysfunction after traumatic brain injury in rats.  European Journal of Neuroscience. 2005;  21 2406-2418
  • 13 McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL. Traumatic brain injury in the rat: characterization of a lateral fluid percussion model.  Neuroscience. 1989;  28 233-244
  • 14 Hicks R, Soares H, Smith D, McIntosh TK. Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat.  Acta Neuropathol. 1996;  91 236-246
  • 15 Inglis FM, Fibiger HC. Increases in hippocampal and frontal cortical acetylcholin release associated with presentation of sensory stimuli.  Neurosience. 1995;  66 ((1)) 81-86
  • 16 Okiyama K, Smith DH, Thomas MJ, McIntosh TK.. Evaluation of a novel calcium channel blocker, (S)-emopamil, on regional cerebral edema and neurobehavioral function after experimental brain injury.  J Neurosurg. 1992;  77 607-615
  • 17 Sinson G, Voddi M, McIntosh TK. Nerve growth factor administration attenuates cognitive but not, not neurobehavioral motor dysfunction or hippocampal cell, los following fluid-percussion brain injury in rats.  Journal of neurochemistry. 1995;  65 ((5)) 2209-2216
  • 18 Birbaumer N, Schmidt RF. Lernen und Gedächtnis. V: Neuro-und Sinnesphysiologie. Schmidt-Scheible ed. Berlin, Heidelberg: Springer Verlag 2001: 435-454
  • 19 Gentile AM, Beheshti Z, Held MJ. Enrichment versus exercise effects on motor impairments following cortical removals in rats.  Behav Neural Biol. 1987;  47 321-332
  • 20 Grabowski MM, Sorensen JC, Mattsson B, Zimmer J, Johansson BB. Influence of an enriched environment and cortical grafting on functional outcome in brain infarcts of adult rats.  Exp Neurol. 1995;  133 96-102
  • 21 Johansson BB, Ohlsson AL.. Environment, social interaction and physical activity as determinants of functional outcome after cerebral infarction in the rat.  Exp Neurol. 1996;  139 322-327
  • 22 Ohlsson AL, Johansson BB. Environment influences functional outcome of cerebral infarction in rats.  Stroke. 1995;  26 644-649
  • 23 Mohammed AK, Jonsson G, Archer T.. Selective lesioning of forebrain noradrenaline neurons at birth abolishes the improved maze learning performance induced by rearing in complex environment.  Brain Res. 1986;  398 6-10
  • 24 Renner MJ, Rosenzweig MR. Social interactions among rats housed in grouped and enriched conditions.  Dev Psychobiol. 1986;  19 303-313
  • 25 Pham T, Ickes B, Albeck D, Soderstrom S, Granholm A-C, Mohammed AH. Changes in brain NGF levels and NGF receptors in rats exposed to environmental enrichment for one year.  Neuroscience. 1999b;  94 279-286
  • 26 Pham T, Soderstrom S, Winblad B, Mohammed AH.. The effects of environmental enrichment on cognitive function and hippocampal NGF in the non-handled rat.  Behav Brain Res. 1999a;  103 63-70
  • 27 Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N. Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment.  Neurosci Lett. 1992;  138 153-156
  • 28 Fernandez-Teruel A, Escorihuela RM, Castellano B, Gonzalez B, Tobena A.. Neonatal handling and environmental enrichment effects on emotionality, novelty/reward seeking, and age-related cognitive and hippocampal impairment: focus on the Roman lines.  Behav Genet. 1997;  27 513-526
  • 29 Risedal A, Mattsson B, Dahlqvist P, Nordborg C, Olsson T, Johansson BB. Environmental influences on functional outcome after, a cortical infarct in the rat.  Brain research bulletin. 2002;  58 ((3)) 315-321
  • 30 Lippert-Grüner M, Terhaag D.. Ergebnisse der frührehabilitativen Behandlung nach schwerem Schädel-Hirn-Trauma auf der neurochirurgischen Intensivstation.  Phys Med Rehab Kuror. 2001;  11 233-236
  • 31 Lippert-Grüner M, Wedekind C, Ernestus RI, Klug N. Early Rehabilitative Concepts in The Therapy of the Comatose Brain Injured Patients.  Acta Neurochir. 2001;  79 ((Suppl.)) 21-23
  • 32 Lippert-Grüner M, Wedekind C, Klug N. Functional and psychosocial outcome one year after severe traumatic brain injury and early-onset rehabilitation therapy.  J Rehabil Med. 2002;  34 1-4
  • 33 Kleim JA, Swain RA, Armstrong KA, Napper RM, Jones TA, Greenough WT.. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning.  Neurobiol Leam Mem. 1998;  69 274-289
  • 34 Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WR. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats.  Proc Natl Acad Sci USA. 1990;  87 5568-5572
  • 35 Remple MS, Bruneau RM, Berg PM Van den, Goertzen C, Kleim JA.. Sensitivity of cortical movement representations to motor experience: Evidence that skill learning but not trength training induces cortical reorganization.  Behav Brain Res. 2001;  123 133-141
  • 36 Barbay S, Plautz EP, Friel KM, Frost SB, Stowe AM, Dancause N, Wang H, Nudo RJ.. Delayed rehabilitative training following a small ischemic infarct in nonhuman primate primary motor cortex (Ml).  Soc Neurosci. 2001;  Abstr 27 931-934

1 Hinweis
M. Lippert-Grüner und M. Mägele beteiligten sich an der Herstellung der Arbeit gleichwertig und teilen sich die Erstautorschaft

Korrespondenzadresse

Dr. med. M. Lippert-Grüner

Klinik für Allgemeine Neurochirurgie

Klinikum der Universität zu Köln

Joseph-Stelzmann-Straße 9

50931 Köln

Email: Marcela.Lippert-Gruener@medizin.uni-koeln.de

    >