Zusammenfassung
Die vorliegende Übersichtsarbeit konzentriert sich auf Befunde aus dem Bereich der
funktionellen Bildgebung. Nach einigen grundlegenden Informationen über Phänomenologie,
Epidemiologie und Therapieansätze werden die wesentlichen Hirnareale vorgestellt,
die mit Zwangsstörungen in Zusammenhang gebracht werden. Hierbei stehen Dysfunktionen
im Bereich neuronaler Regelkreise im Vordergrund, welche von verschiedenen Kortexarealen
über Striatum und Thalamus wieder zurück zum Kortex verlaufen. In verschiedenen, mit
Verfahren der funktionellen Bildgebung durchgeführten Studien wurde allerdings deutlich,
dass ein über den präfrontalen Kortex, Striatum und Thalamus hinausgehendes Netzwerk
von Hirnarealen involviert sein dürfte, z. B. inferiore parietale Regionen, Bereiche
des zingulären Kortex, Amygdala, Insel, Zerebellum. Vorschläge für eine Subklassifikation
der Zwangsstörungen weisen darauf hin, dass an den verschiedenen Unterformen (Waschzwänge
mit Kontaminationsangst, Kontrollzwänge mit aggressiven, sexuellen oder religiösen
Zwangsgedanken, Symmetrie- und Ordnungszwänge, Hort- und Sammelzwänge) jeweils unterschiedliche,
sich aber überschneidende Hirnareale beteiligt sind. Die geläufigsten methodischen
Zugänge bei der neurofunktionellen Untersuchung arbeiten mit Symptomprovokation und
mit Paradigmen zur Erfassung von Handlungsüberwachung und Fehlerkontrolle, da in diesen
Funktionen zwangsspezifische Defizite vermutet werden. Darstellungen zur psychotherapeutisch
induzierten Veränderung von Hirnaktivierungsmustern bei Zwangsstörungen runden das
Bild ab.
Abstract
The following review is focusing on results of functional neuroimaging. After some
introductory remarks on the phenomenology, epidemiology, and psychotherapy approaches
of obsessive-compulsive disorders (OCD) the most important OCD-related brain regions
are presented. Obviously, not only the prominent cortico-striato-thalamo-cortical
feedback loops are involved, as functional brain imaging studies tell us, but also
other regions as the inferior parietal lobe, the anterior and posterior cingulate
gyrus, insula, amygdala, cerebellum, and others. Subclassifications using factor-analysis
methods support the hypothesis, that most important subtypes („washing/contamination
fear”, „obsessions/checking”, „symmetry/ordering”, „hoarding”) involve different,
but partially overlapping brain areas. Stimulation paradigms in fMRI-research are
commonly based on symptom provocation by visual or tactile stimuli, or on action-monitoring
and error-monitoring tasks. Deficits in action-monitoring and planning are discussed
to be one of the basic dysfunctions of OCD. Finally, results of psychotherapeutic
induced variations of brain activations in OCD are presented.
Key words
obsessive-compulsive disorder - functional neuroimaging - fMRI - psychotherapy
Literatur
1 Zaudig M.
Epidemiologie, Komorbidität und Verlauf der Zwangsstörung. In: Zaudig M, Hauke W, Hegerl U (Hrsg) Die Zwangsstörung. Diagnostik und Therapie. Stuttgart;
Schattauer 2002: 33-42
2
Karno M, Golding J N, Sorenson S B, Burmann M A.
The epidemiology of obsessive-compulsive disorders in five US-Communities.
Arch Gen Psychiatry.
1988;
45
1094-1099
3 Wittchen H U, Saß H, Zaudig M, Koehler K. Diagnostisches und Statistisches Manual
psychischer Störungen (DSM-II-R). Deutsche Bearbeitung und Einführung. Weinheim; Beltz
1989
4
Eaton W W, Kramer M, Anthony J C.
The incidence of specific DIS/DSM-III mental disorders: Data from NIMH Epidemiologic
Catchment Area Program.
Acta Psychiatrica Scand.
1989;
79
163-187
5 Reinecker H, Zaudig M. Langzeiteffekte bei der Behandlung von Zwangsstörungen. Lengerich;
Pabst 1995
6
Weissman M M, Bland R C, Canino G J. et al .
The cross national epidemiology of obsessive-compulsive disorder.
J Clin Psychiatry.
1994;
55 (Suppl)
5-10
7
Shafran R.
Obsessive-compulsive disorder in children and adolescents.
Child Psychol Psychiatry Rev.
2001;
6
50-58
8
Snider L A, Swedo S E.
Pediatric obsessive-compulsive disorder.
J Am Med Ass.
2000;
284
3104-3106
9
Stengler-Wenzke K, Beck M, Holzinger A, Angermeyer M C.
Stigmatisierungserfahrungen von Patienten mit Zwangserkrankungen.
Fortschr Neurologie Psychiatrie.
2004;
72
7-13
10
Eisen J, Rasmussen S.
Clinical features of obsessive-compulsive disorder.
Psych Clin North Am.
2000;
23
469-491
11
Sobin C, Blundell M L, Karayiorgou M.
Phenotypic differences in early- and late-onset obsessive-compulsive disorder.
Comp Psychiatry.
2000;
41
373-379
12
Rosario-Campos M, Leckmann J.
Adults with early-onset obsessive-compulsive disorder.
Am J Psychotherapy.
2001;
158
1899-1903
13
Millet B, Kochmann F, Gallarda T. et al .
Phenomenological and comorbid features associated in obsessive-compulsive disorder:
Influence of age of onset.
J Affective Dis.
2004;
83
283-284
14
Fontanelle L F, Mendlowicz M, Marques C, Versiani M.
Early- and late-onset obsessive-compulsive disorder in adult patients: An exploratory
clinical and therapeutic study.
J Psychiatric Res.
2003;
37
127-133
15 Jänsch P. Der frühe Beginn der Zwangsstörung: Einfluss auf Symptomatik, Schweregrad
und Komorbidität. Diplomarbeit an der Ludwig-Maximilian-Universität München 2004
16
Piacentini J, Bergman L.
Obsessive-compulsive disorder in children.
Psych Clin North Am.
2000;
23
519-533
17
Pauls D L, Alsobrook J P.
The inheritance of obsessive-compulsive disorder.
Child Adol Psych Clin North Am.
1999;
8
481-496
18
Nestadt G, Lan T, Samuels J. et al .
Complex segregation analysis provides compelling evidence for a major gene underlying
obsessive-compulsive disorder and for heterogenetics by sex.
Am J Human Gen.
2000;
67
1611-1616
19
Hegerl U, Henkel V, Pogarell O.
Neurobiologische Erklärungsansätze bei Zwangsstörungen.
Psychotherapie.
2002;
7
228-233
20
Nestadt G, Samuels J, Riddle M. et al .
A family study of obsessive-compulsive disorder.
Arch Gen Psychiatry.
2000;
57
358-363
21
Hauke W.
Die Effektivität von multimodaler Verhaltenstherapie bei Zwangsstörungen.
Prax Klin Verhaltensmed Rehabilitation.
1994;
26
82-88
22 Reinecker H. Zwänge. Diagnose, Theorien und Behandlung. Bern; Huber 1994
23 Zaudig M, Hauke W, Hegerl U. Die Zwangsstörung. Diagnostik und Therapie. Stuttgart;
Schattauer 2002
24 Lakatos A. Kognitiv-behaviorale Therapie für Zwangsstörungen. Regensburg; Roderer
1997
25 Ambühl H, Meier B. Zwang verstehen und behandeln. Stuttgart; Pfeiffer bei Klett-Cotta
2003
26 Tominschek I, Schiepek G. Zwangsstörungen. Ein systemisch-integratives Behandlungskonzept. Göttingen;
Hogrefe 2007 (im Druck)
27 Kordon A, Leplow B, Hohagen F.
Zwangsstörungen. In: Förstl H, Hautzinger M, Roth G (Hrsg) Neurobiologie psychischer Störungen. Heidelberg;
Springer Medizin Verlag 2006: 545-576
28 Mavrogiorgou P, Hegerl U.
Psychopharmakotherapie der Zwangsstörungen. In: Zaudig M, Hauke W, Hegerl U (Hrsg) Die Zwangsstörung. Diagnostik und Therapie. Stuttgart;
Schattauer 2002: 91-106
29
Kobak K A, Greist J H, Jefferson J W. et al .
Behavioral versus pharmacological treatments of obsessive-compulsive disorder: A meta-analysis.
Psychopharmacology.
1998;
136
205-216
30
Hohagen F, Winkelmann G, Rasche-Ruchle H. et al .
Combination of behavioural therapy with fluvoxamine in comparison with behaviour therapy
and placebo. Results of a multicentre study.
Br J Psychiatry.
1998;
35 (Suppl)
71-88
31
Rauch S L, Dougherty D D, Cosgrove G R. et al .
Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy
for obsessive compulsive disorder.
Biol Psychiatry.
2001;
50
659-667
32
Mallet L, Mesnage V, Houeto J L. et al .
Compulsions, Parkinson's disease and stimulation.
Lancet.
2002;
360
1302-1304
33
Tass P A.
A model of desynchronization deep brain stimulation with a demand-controlled coordinated
reset of neural subpopulation.
Biol Cybernetics.
2003;
D01
1007/422-425
34
Arolt V, Rothermundt M.
Psychische Erkrankungen und Immunsystem.
Psychother Psychosom med Psychol.
2005;
55
36-48
35
Swedo S E, Leonard H L, Garvey M. et al .
Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections:
Clinical description of the first 50 cases.
Am J Psychiatry.
1998;
155
264-271
36
Kuelz A K, Hohagen F, Voderholzer U.
Neuropsychological performance in obsessive-compulsive disorder: A critical review.
Biol Psychology.
2004;
65
185-236
37
Aigner M, Zitterl W, Prayer D. et al .
Magnetic resonance imaging in patients with obsessive-compulsive disorder with good
versus poor insight.
Psychiatry Res - Neuroimaging.
2005;
140
173-179
38 Schiepek G. Neurobiologie der Psychotherapie. Stuttgart; Schattauer 2004
39 Walter H (Hrsg). Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Stuttgart;
Schattauer 2005
40 Schneider F, Fink G R (Hrsg). Funktionelle Magnetresonanztomographie in Psychiatrie
und Neurologie. Heidelberg; Springer 2007
41
Friedlander L, Desrocher M.
Neuroimaging studies of obsessive-compulsive disorder in adults and children.
Clin Psychol Rev.
2006;
26
32-49
42
Graybiel A M, Rauch S L.
Toward a neurobiology of obsessive-compulsive disorder.
Neuron.
2000;
28
343-347
43
Whiteside S P, Port J D, Abramowitz J S.
A meta-analysis of functional neuroimaging in obsessive-compulsive disorder.
Psychiatry Res - Neuroimaging.
2004;
132
69-79
44 Zurowski B, Kordon A, Hohagen F.
Zwangsstörungen. In: Walter H (Hrsg) Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Stuttgart;
Schattauer 2005: 303-319
45
Stein D J, Goodman W K, Rauch S L.
The cognitive-affective neuroscience of obsessive-compulsive disorder.
Curr Psychiatry Rep.
2000;
2
341-346
46
Saxena S, Brody A L, Schwartz J M, Baxter L R.
Neuroimaging und frontal-subcortical circuitry in obsessive-compulsive disorder.
Brit J Psychiatry.
1998;
173 (Suppl)
26-37
47
Saxena S, Bota R G, Brody A L.
Brain-behaviour relationships in obsessive-compulsive disorder.
Sem Clin Neuropsychiatry.
2001;
6
82-101
48
Saxena S, Rauch S L.
Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder.
Psychiatr Clin North Am.
2000;
23
563-586
49 Rohen J W. Funktionelle Neuroanatomie. Stuttgart; Schattauer 2001
50
Alexander G E, Crutcher M D.
Functional architecture of basal ganglia circuits: Neural substrates of parallel processing.
Trends Neurosci.
1990;
13
266-271
51
Wewetzer C, Jans T, Beck N. et al .
Interaktion, Familienklima, Erziehungsstile und Erziehungspraktiken in Familien mit
einem zwangskranken Kind.
Verhaltenstherapie.
2003;
13
10-18
52
Insel T R.
Toward a neuroanatomy of obsessive-compulsive disorder.
Arch Gen Psychiatry.
1992;
49
739-744
53
Wee N J van der, Stevens H, Hardeman J A. et al .
Enhanced dopamine transporter density in psychotropic-naïve patients with obsessive-compulsive
disorder shown by [123 I]β-CIT SPECT.
Am J Psychiatry.
2004;
161
2201-2206
54
Pogarell O, Hamann C, Pöpperl G. et al .
Elevated brain serotonin transporter availability in patients with obsessive-compulsive
disorder.
Biol Psychiatry.
2003;
54
1406-1413
55
Adams K H, Hansen E S, Pinborg L H. et al .
Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding
in the caudate nuclei.
Int J Neuropsychopharm.
2005;
8
391-401
56
Simpson H B, Lombardo I, Slifstein M. et al .
Serotonin transporters in obsessive-compulsive disorder: A positron emission tomography
study with [11 C]McN5652.
Biol Psychiatry.
2003;
54
1414-1421
57
Stengler-Wenzke K, Muller U, Angermeyer M C. et al .
Reduced serotonin transporter availability in obsessive-compulsive disorder.
Eur Arch Psychiatry Clin Neurosci.
2004;
254
252-255
58
Hesse S, Muller U, Lincke T. et al .
Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder.
Psychiatry Res.
2005;
140
63-72
59
Denys D, Wee N van der, Janssen J. et al .
Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder.
Biol Psychiatry.
2004;
55
1041-1045
60
Denys D, Zohar J, Westenberg H G.
The role of dopamine in obsessive-compulsive disorder: Preclinical and clinical evidence.
J Clin Psychiatry.
2004;
65 (Suppl)
11-17
61
Kugaya A, Seneca N M, Snyder P J. et al .
Changes in human in vivo serotonin and dopamine transporter availabilities during
chronic antidepressant administration.
Neuropsychopharmacology.
2003;
28
413-420
62
Pogarell O, Pöpperl G, Mulert C. et al .
SERT and DAT availabilities under citalopram treatment in obsessive-compulsive disorder.
Europ J Neuropsychopharmacology.
2005;
15
521-524
63
Rolls E T.
The functions of the orbitofrontal cortex.
Brain Cog.
2004;
55
11-29
64
Davidson R J, Jackson D C, Kalin N.
Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience.
Psychol Bull.
2000;
126
890-909
65
Damasio A R.
The somatic marker hypothesis and the possible functions of the prefrontal cortex.
Phil Trans Roy Soc London - Series B.
Biol Sci.
1996;
351
1413-1420
66 Damasio A R. Ich fühle, also bin ich. Die Entschlüsselung des Bewusstseins. München;
List 2001
67
Bechara A.
Neurobiology of decision making: Risk and reward.
Sem Clin Neuropsychiatry.
2001;
6
205-216
68
Bechara A, Damasio H, Tranel D, Damasio A R.
Deciding advantageously before knowing the advantageous strategy.
Science.
1997;
275
1293-1295
69
Maia T V, McClelland J L.
A reexamination of the evidence for the somatic marker hypothesis: What participants
really know in the Iowa gambling task.
Proc Nat Acad Sci USA.
2004;
101
16075-16080
70
Schienle A, Schäfer A, Stark R. et al .
Neural responses of OCD patients towards disorder relevant, generally disgust-inducing
and fear-inducing pictures.
Int J Psychophysiology.
2005;
57
69-77
71
Iacoboni M, Zaidel E.
Interhemispheric visuo-motor integration in humans: The role of the superior parietal
cortex.
Neuropsychologia.
2004;
42
419-425
72
Sirigu A, Duhamel J R, Cohen L. et al .
The mental representation of hand movements after parietal cortex damage.
Science.
1996;
273
1564-1568
73 Bauer J. Warum ich fühle, was du fühlst. Hamburg; Hoffmann & Campe 2005
74
Gallese V, Goldman A.
Mirror neurons and the simulation theory of mind-reading.
Trends Cog Sci.
1999;
2
493-500
75
Tallis F.
The neuropsychology of obsessive-compulsive disorder: A review and consideration of
clinical implications.
Brit J Clin Psychol.
1997;
36
3-20
76 Ketter T A, Wang P W, Lembke A, Sachs N.
Physiological and pharmacological induction of affect. In: Davidson RJ, Scherer KR, Goldsmith HH (eds) Handbook of affective sciences. Oxford;
Oxford University Press 2003: 930-962
77
Davidson R J, Pizzagalli D, Nitschke J B, Putnam K M.
Depression: Perspectives from affective neuroscience.
Ann Rev Psychol.
2002;
53
545-547
78 Davidson R J, Pizzagalli D, Nitschke J B, Kalin N H.
Parsing the subcomponents of emotion and disorders of emotion: Perspectives from affective
neuroscience. In: Davidson RJ, Scherer KR, Goldsmith HH (eds) Handbook of affective sciences. Oxford;
Oxford University Press 2003: 8-24
79
Carter C S, Braver T S, Barch T M. et al .
Anterior cingulate cortex, error detection, and the online monitoring of performance.
Science.
1998;
280
747-749
80
Devinsky O, Morrell M J, Vogt B A.
Contributions of anterior cingulate cortex to behaviour.
Brain.
1995;
118
279-306
81
Sanfey A G, Rilling J K, Aronson J A. et al .
The neural basis of economic decision-making in the Ultimatum Game.
Science.
2003;
300
1755-1758
82
Adler C M, McDonough-Ryan P, Sax K W. et al .
fMRI of neuronal activation with symptom provocation in unmedicated patients with
obsessive-compulsive disorder.
J Psychiatry Res.
2000;
34
317-324
83
Breiter H C, Rauch S L, Kwong K K. et al .
Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive
disorder.
Arch Gen Psychiatry.
1996;
53
595-606
84
Cottraux J, Gerard D, Cinotti L. et al .
A controlled positron emission tomography study of obsessive and neutral auditory
stimulation in obsessive-compulsive patients with checking rituals.
Psychiatry Res.
1996;
60
101-112
85
Rauch S L, Jenike M A, Alpert N M. et al .
Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive
disorder using oxygen 15-labeled carbon dioxide and positron emission tomography.
Arch Gen Psychiatry.
1994;
51
62-70
86
Cavedini P, Riboldi G, D'Annucci A. et al .
Decision-making heterogenity in obsessive-compulsive disorder: Ventromedial prefrontal
cortex function predicts different treatment outcomes.
Neuropsychologia.
2002;
40
205-211
87
Mayberg H S, Brannan S K, Mahurin R K. et al .
Cingulate function in depression: A potential predictor of treatment response.
Neuroreport.
1997;
8
1057-1061
88
Pizzagalli D, Pascual-Marqui R D, Nitschke J B. et al .
Anterior cingulate activity as a predictor of degree of treatment response in major
depression: Evidence from brain electrical tomography analysis.
Am J Psychiatry.
2001;
158
405-415
89
Etkin A, Pittenger C, Polan H J, Kandel E R.
Toward a neurobiology of psychotherapy: Basic science and clinical applications.
J Neuropsychiatry Clin Neurosci.
2005;
17
145-158
90
LeDoux J E.
Emotion circuits in the brain.
Ann Rev Neurosci.
2000;
23
155-184
91 LeDoux J E. Das Netz der Gefühle. Wie Emotionen entstehen. München; dtv 2001
92 LaBar K S, LeDoux J E.
Emotional learning circuits in animals and humans. In: Davidson RJ, Scherer KR, Goldsmith HH (eds) Handbook of affective sciences. Oxford;
Oxford University Press 2003: 52-65
93
Morris J S, Öhman A, Dolan R J.
A subcortical pathway to the right amygdala mediating „unseen” fear.
PNAS USA.
1999;
96
1680-1685
94
Phillips M L, Mataix-Cols D.
Patterns of neural response to emotive stimuli distinguish the different symptom dimensions
of obsessive-compulsive disorder.
CNS Spectrum.
2004;
9
275-283
95
Heuvel O A van den, Veltman D J, Groenewegen H J. et al .
Amygdala activity in obsessive-compulsive disorder with contamination fear: A study
with oxygen-15 water positron emission tomography.
Psychiatry Res - Neuroimaging.
2004;
132
225-237
96
Cannistraro P A, Wright C I, Wedig M M. et al .
Amygdala responses to human faces in obsessive-compulsive disorder.
Biol Psychiatry.
2004;
56
916-920
97
Breiter H C, Rauch S L.
Functional MRI and the study of OCD: From symptom provocation to cognitive-behavioral
probes of cortico-striatal systems and the amygdala.
Neuroimage.
1996;
4
127-138
98
Pujol J, Soriano-Mas C, Alonso P. et al .
Mapping structure brain alterations in obsessive-compulsive disorder.
Arch Gen Psychiatry.
2004;
61
720-730
99
Wright P, He G, Shapira N A. et al .
Disgust and the insula: fMRI responses to pictures of mutilation and contamination.
Neuroreport.
2004;
15
2347-2351
100
Shapira N A, Liu Y, He A G. et al .
Brain activation by disgust-inducing pictures in obsessive-compulsive disorder.
Biol Psychiatry.
2003;
54
751-756
101
Kim J J, Lee M C, Kim J. et al .
Grey matter abnormalities in obsessive-compulsive disorder: Statistical parametric
mapping of segmented magnetic resonance images.
Brit J Psychiatry.
2001;
179
330-334
102
Jenike M A, Breiter H C, Baer L. et al .
Cerebral structural abnormalities in obsessive-compulsive disorder. A quantitative
morphometric magnetic resonance imaging study.
Arch Gen Psychiatry.
1996;
53
625-632
103
Nakao T, Nakagawa A, Yoshiura T. et al .
Brain activation of patients with obsessive-compulsive disorder during neuropsychological
and symptom provocation tasks before and after symptom improvement: A functional magnetic
resonance imaging study.
Biol Psychiatry.
2005;
57
901-910
104 Roth G, Dicke U.
Funktionelle Neuroanatomie des limbischen Systems. In: Förstl H, Hautzinger M, Roth G (Hrsg) Neurobiologie psychischer Störungen. Heidelberg;
Springer Medizin Verlag 2006: 1-74
105
Heimer L.
A new anatomical framework for neuropsychiatric disorders and drug abuse.
Am J Psychiatry.
2003;
160
1726-1739
106 Cummings J L, Mega M S. Neuropsychiatry and behavioural neuroscience. New York;
Oxford University Press 2003
107
Perani D, Colombo C, Bressi S. et al .
[18 F]FDG PET study in obsessive-compulsive disorder. A clinical/metabolic correlation
study after treatment.
Brit J Psychiatry.
1995;
166
244-250
108
Greisberg S, McKay D.
Neuropsychology of obsessive-compulsive disorder: A review and treatment implications.
Clin Psychol Rev.
2003;
23
95-117
109 Kathmann N. Neuropsychologie der Zwangsstörung. Göttingen; Hogrefe 2007
110
Cavallaro R, Cavedini P, Mistretta P. et al .
Basal-cortical circuits in schizophrenia and obsessive-compulsive disorder: A controlled,
double dissociation study.
Biol Psychiatry.
2003;
54
437-443
111
Nielen M MA, Veltman D J, Jong R de. et al .
Decision making performance in obsessive-compulsive disorder.
J Affective Dis.
2002;
69
257-260
112
Elliott R, Rees G, Dolan R J.
Ventromedial prefrontal cortex mediates guessing.
Neuropsychologia.
1999;
37
403-411
113
Abbruzzese M, Ferri S, Scarone S.
The selective breakdown of frontal functions in patients with obsessive-compulsive
disorder and in patients with schizophrenia: A double dissoziation experimental finding.
Neuropsychologia.
1997;
35
907-912
114
Fernandez A, Pino Alonso M, Mataix-Cols D. et al .
Neuroactivation of the Tower of Hanoi in patients with obsessive-compulsive disorder
and healthy volunteers.
Rev Esp Med Nucl.
2003;
22
376-385
115
Rauch S L, Savage C R, Alpert N M. et al .
Probing striatal function in obsessive-compulsive disorder: A PET study of implicit
sequence learning.
J Neuropsychiatry Clin Neurosci.
1997;
9
568-573
116
Deckersbach T, Savage C R, Curran T. et al .
A study of parallel implicit and explicit information processing in patients with
obsessive-compulsive disorder.
Am J Psychiatry.
2002;
159
1780-1782
117
Pogarell O, Hegerl U.
Bildgebende Verfahren bei Zwangsstörungen.
Psychotherapie.
2002;
7
204-208
118
Mataix-Cols D, Conceicao do Rosario-Campos M, Leckman J F.
A multidimensional model of obsessive-compulsive disorder.
Am J Psychiatry.
2005;
162
228-238
119
Rauch S L, Dougherty D D, Shin L M. et al .
Neural correlates of factor-analyzed OCD symptom dimensions: A PET study.
CNS Spectrum.
1998;
3
37-43
120
Saxena S, Brody A L, Maidment K M. et al .
Cerebral glucose metabolism in obsessive-compulsive hoarding.
Am J Psychiatry.
2004;
161
1038-1048
121
Mataix-Cols D, Wooderson S, Lawrence N. et al .
Distinct neural correlates of washing, checking, and hoarding symptom dimensions in
obsessive-compulsive disorder.
Arch Gen Psychiatry.
2004;
61
564-576
122
Phillips M L, Marks I M, Senior C. et al .
A differential neural response in obsessive-compulsive patients with washing compared
with checking symptoms to disgust.
Psychol Med.
2000;
30
1037-1050
123 Lang P J, Bradley M M, Cuthbert B N. International Affective Picture System (IAPS):
Instruction manual and affective ratings. Gainesville, FL; Center for Research in
Psychophysiology, University of Florida 1997/2001
124
Kozak M J, Foa E B.
Obsessions, overvalued ideas, and delusions in obsessive-compulsive disorder.
Behav Res Ther.
1994;
32
343-353
125 American Psychiatric Association .Diagnostic and Statistical Manual of Mental
Disorders. 4th revised edition. Washington, DC; APA 1994
126
McGuire P K, Bench C J, Frith S D. et al .
Functional anatomy of obsessive-compulsive phenomena.
Brit J Psychiatry.
1994;
164
459-468
127
Overbeck G, Michal M, Russ M O. et al .
Konvergenzen psychotherapeutischer und neurobiologischer Ergebniskontrolle bei einer
schweren Zwangsstörung.
Psychother Psychosom med Psychol.
2004;
54
73-81
128
Tolin D F, Abramowitz J S, Brigidi B D. et al .
Memory and memory confidence in obsessive-compulsive disorder.
Behav Res Ther.
2001;
39
913-927
129
Pitman R K.
A cybernetic model of obsessive-compulsive pathology.
Compr Psychiatry.
1987;
28
334-343
130
Veen V van, Carter C C.
The anterior cingulate as a conflict monitor: fMRI and ERP studies.
Physiol Behav.
2002;
77
477-482
131
Veen V van, Carter C C.
The timing of action-monitoring processes in the anterior cingulate cortex.
J Cog Neurosci.
2002;
14
593-602
132
Gehring W J, Himle J A, Nisenson L G.
Action-monitoring dysfunction in obsessive-compulsive disorder.
Psychol Sci.
2000;
11
1-6
133
Kiehl K A, Liddle P F, Hopfinger J B.
Error processing and the rostral anterior cingulate: An event-related fMRI study.
Psychophysiology.
2000;
37
216-223
134
Scheffers M K, Coles M GH, Bernstein P. et al .
Event-related brain potentials and error-related processing: An analysis of incorrect
responses of go and no-go stimuli.
Psychophysiology.
1996;
33
42-53
135
Veen V van, Holroyd C B, Cohen J D. et al .
Errors without conflict: Implications for performance monitoring theories of anterior
cingulate cortex.
Brain Cog.
2004;
56
267-276
136
Ursu S, Stenger V A, Shear M K. et al .
Overactive action monitoring in obsessive-compulsive disorder: Evidence from functional
magnetic resonance imaging.
Psychol Sci.
2003;
14
347-353
137
Maltby N, Tolin D F, Worhunsky P. et al .
Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive
disorder: An event-related fMRI study.
Neuroimage.
2005;
24
495-503
138
Bush G, Whalen P J, Rosen B R. et al .
The counting Stroop: An interference task specialized for functional neuroimaging-validation
study with functional MRI.
Hum Brain Mapping.
1998;
6
270-282
139
Heuvel O A van den, Veltman D J, Groenewegen H J. et al .
Frontal-striatal dysfunction during planning in obsessive-compulsive disorder.
Arch Gen Psychiatry.
2005;
62
301-309
140
Baxter L R, Schwartz J M, Bergman K S. et al .
Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive
disorder.
Arch Gen Psychiatry.
1992;
49
681-689
141
Nakatani E, Nakgawa A, Ohara Y. et al .
Effects of behavior therapy on regional cerebral blood flow in obsessive-compulsive
disorder.
Psychiatry Res.
2003;
124
113-120
142
Schwartz J M, Stoessel P W, Baxter L R. et al .
Systematic changes in cerebral glucose metabolic rate after successful behavior modification
treatment of obsessive-compulsive disorder.
Arch Gen Psychiatry.
1996;
53
109-113
143
Benazon N R, Moore G J, Rosenberg D J.
Neurochemical analyses in pediatric obsessive-compulsive disorder in patients treated
with cognitive-behavioral therapy.
J Am Acad Child Adol Psychiatry.
2003;
42
1279-1285
144
Brody A L, Saxena S, Schwartz J M. et al .
FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive-compulsive
disorder.
Psychiatry Res - Neuroimaging.
1998;
84
1-6
145
Swedo S E, Schapiro M G, Grady C L. et al .
Cerebral glucose metabolism in childhood onset obsessive-compulsive disorder.
Arch Gen Psychiatry.
1989;
46
518-523
146
Saxena S, Brody A L, Ho M L. et al .
Differential cerebral metabolic changes with paroxetine treatment of obsessive-compulsive
disorder vs major depression.
Arch Gen Psychiatry.
2002;
59
250-261
147
Swedo S E, Pietrini P, Leonard H L. et al .
Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization
during pharmacotherapy.
Arch Gen Psychiatry.
1992;
49
690-694
148
Zohar J, Chopra M, Sasson Y. et al .
Obsessive-compulsive disorder: Serotonin and beyond.
World J Biol Psychiatry.
2000;
1
92-100
149
Mansari M El, Bouchard C, Blier P.
Alteration of serotonin release in the guinea pig orbito-frontal cortex by selective
serotonin reuptake inhibitors.
Neuropsychopharmacology.
1995;
13
117-127
150
Stein D J, Heerden B van, Wessels C J. et al .
Single photon emission computed tomography of the brain with 99m Tc-HMPAO during sumatriptan challenge in obsessive-compulsive disorder: Investigating
the functional role of the serotonin auto-receptor.
Prog Neuropsychopharmacology Biol Psychiatry.
1999;
23
1079-1099
151
Wiggins G C, Triantafyllou C, Potthast A. et al .
32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.
Magnetic Resonance Med.
2006;
56
216-223
152 Haken H, Schiepek G. Synergetik in der Psychologie. Selbstorganisation verstehen
und gestalten. Göttingen; Hogrefe 2006
153
Friston K J, Harrison L, Penny W.
Dynamic causal modelling.
Neuroimage.
2003;
19
1273-1302
154
Weiskopf N, Veit R, Erb M. et al .
Physiological self-regulation of regional brain activity using real-time functional
magnetic resonance imaging (fMRI): Methodology and exemplary data.
Neuroimage.
2003;
19
577-586
155
Charms R C de. et al .
Control over barin activation and pain learned by using real-time functional MRI.
PNAS.
2005;
102
18626-18631
156
Spitzer M.
Therapie mit dem Scanner? Feedback gegen Schmerzen mittels Echtzeit-fMRT.
Nervenheilkunde.
2006;
25
390-392
157
Staketee G.
Social support and treatment outcome of obsessive-compulsive disorder at 9-month follow
up.
Behav Psychother.
1993;
21
81-95
158
Schiepek G, Tominschek I, Eckert H, Caine C.
Monitoring: Der Psyche bei der Arbeit zuschauen.
Psychol Heute.
2007;
34 (1)
42-47
1 Wir verwenden hier aufgrund der Heterogenität der Subtypen den Plural, vgl. unten
Punkt 3.
2 Abkürzungen: rCBF: regionaler zerebraler Blutfluss; OFC: orbitofrontaler Kortex;
PFC: präfrontaler Kortex; AC bzw. ACC: anteriores Zingulum bzw. anteriorer zingulärer
Kortex; HC: Healthy controls, d. h. gesunde Vergleichspersonen.
Prof. Dr. Günter Schiepek
Forschungseinrichtung für Dynamische Systeme, Institut für Psychologie, Alpen-Adria-Universität
Klagenfurt
Universitätsstraße 65 - 67
9020 Klagenfurt, Österreich
Center for Complex Systems
Belgradstraße 1
80796 München
Email: guenter.schiepek@ccsys.de