Planta Med 2006; 72(15): 1396-1402
DOI: 10.1055/s-2006-951726
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Antileishmanial Activity of Quinovic Acid Glycosides and Cadambine Acid Isolated from Nauclea diderrichii

Carole Di Giorgio1 , Marow Lamidi2 , Florence Delmas1 , Guy Balansard3 , Evelyne Ollivier3
  • 1Laboratoire de Parasitologie, Hygiène et Zoologie, Faculté de Pharmacie, Marseille, France
  • 2IPHAMETRA (Institute of Traditional Pharmacopoeia and Medicine (CENAREST), Libreville, Gabon
  • 3Laboratoire de Pharmacognosie, Faculté de Pharmacie, Marseille, France
Further Information

Publication History

Received: July 3, 2006

Accepted: September 18, 2006

Publication Date:
06 November 2006 (online)

Abstract

Nine quinovic acid glycosides and the alkaloid cadambine acid isolated from N. diderrichii, an evergreen endemic plant of West and Central Africa, were assessed for their in vitro antileishmanial activity against Leishmania infantum. Four quinovic acid glycosides and cadambine acid revealed a strong antileishmanial activity (IC50 = 1 μM) highly specific for the intracellular amastigote form of the parasite. Quinovic acid glycosides were shown to inhibit parasite internalisation by interfering with promastigotes while cadambine acid exerted immunomodulatory activity by inducing NO production in human macrophages. The association of cadambine acid with amphotericin B demonstrated an interesting synergism, suggesting that cadambine acid could be used as a complement of such conventional therapy.

References

  • 1 Murray H W, Berman J D, Davies C R, Saravia N G. Advances in leishmaniasis.  Lancet. 2005;  366 1561-77
  • 2 Desjeux P. Leishmaniasis: current situation and new perspectives.  Comp Immunol Microbiol Infect Dis. 2004;  27 305-18
  • 3 Golenser J, Domb A. New formulations and derivatives of amphotericin B for treatment of leishmaniasis.  Mini Rev Med Chem. 2006;  6 153-62
  • 4 Croft S L, Sundar S, Fairlamb A H. Drug resistance in leishmaniasis.  Clin Microbiol Rev. 2006;  19 111-26
  • 5 Agrawal S, Rai M, Sundar S. Management of visceral leishmaniasis: Indian perspective.  J Postgrad Med. 2005;  51 S53-7
  • 6 Soto J, Soto P. Miltefosine: oral treatment of leishmaniasis.  Expert Rev Anti Infect Ther. 2006;  4 177-85
  • 7 Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control.  Int J Parasitol. 2005;  35 1169-80
  • 8 Gerstl S, Amsalu R, Ritmeijer K. Accessibility of diagnostic and treatment centres for visceral leishmaniasis in Gedaref State, northern Sudan.  Trop Med Int Health. 2006;  11 167-75
  • 9 Dujardin J C. Risk factors in the spread of leishmaniases: towards integrated monitoring?.  Trends Parasitol. 2006;  22 4-6
  • 10 Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow.  Mol Aspects Med. 2006;  27 1-93
  • 11 Lamidi M, Ollivier E, Gasquet M, Faure R, Nzé-Ekekang L, Balansard G. Structural and antimalarial studies of saponins from Nauclea diderrichii bark. In: Waller, Yamasaki, editors Saponins used in traditional and modern medicine. New York; Plenum Press 1996: 383-99
  • 12 Lamidi M, Ollivier E, Faure R, Debrauwer L, Nze-Ekekang L, Balansard G. Quinovic acid glycosides from Nauclea diderrichii .  Planta Med. 1995;  61 280-1
  • 13 Lamidi M, Ollivier E, Mahiou V, Faure R, Debrauwer L, Nze Ekekang L. et al . Gluco-indole alkaloids from the bark of Nauclea diderrichii. 1H and 13C NMR assignments of 3alpha-5alpha-tetrahydrodeoxycordifoline lactam and cadambine acid.  Magn Reson Chem. 2005;  43 427-9
  • 14 Nakayama G R, Caton M C, Nova M P, Parandoosh Z. Assessment of the Alamar Blue assay for cellular growth and viability in vitro .  J Immunol Methods. 1997;  204 205-8
  • 15 Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue.  Parasitol Int. 2000;  48 265-9
  • 16 Ogunkolade B W, Colomb-Valet I, Monjour L, Rhodes-Feuillette A, Abita J P, Frommel D. Interactions between the human monocytic leukaemia THP1 cell line and Old and New World species of Leishmania .  Acta Trop. 1990;  47 171-6
  • 17 Greenspan P, Mayer E P, Fowler S D. Nile red: a selective fluorescent stain for intracellular lipid droplets.  J Cell Biol. 1985;  100 965-73
  • 18 Azas N, Di Giorgio C, Delmas F, Gasquet M, Timon-David P. Assessment of amphotericin B susceptibility in Leishmania infantum promastigotes by flow cytometric membrane potential assay.  Cytometry. 1997;  28 165-9
  • 19 Ding A H, Nathan C F, Stuehr D J. Release of reactive nitrogen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production.  J Immunol. 1988;  141 2407-12
  • 20 Berenbaum M C. A method for testing synergy with any number of agents.  J Infect Dis. 1978;  137 122-30
  • 21 Olivier M, Gregory D J, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signalling point of view.  Clin Microb Rev. 2005;  18 293-305
  • 22 Naderer T, Vince J E, McConville M J. Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host.  Curr Mol Med. 2004;  4 649-65
  • 23 Brittingham A, Morrison C, McMaster R, McGwire B, Chang K P, Mosser D. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis.  J Immunol. 1995;  155 3102-11
  • 24 Proudfoot L, O'Donnell C A, Liew F Y. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages.  Eur J Immunol. 1995;  25 745-50
  • 25 Saha S, Mondal S, Banerjee A, Ghose J, Bhowmick S, Ali N. Immune responses in kala-azar.  Indian J Med Res. 2006;  123 245-66
  • 26 Lessa H A, Machado P, Lima F, Cruz A A, Bacellar O, Guerreiro J. et al . Successful treatment of refractory mucosal leishmaniasis with pentoxifylline plus antimony.  Am J Trop Med Hyg. 2001;  65 87-9
  • 27 Serarslan G, Atik E. Expression of inducible nitric oxide synthase in human cutaneous leishmaniasis.  Mol Cell Biochem. 2005;  280 147-9
  • 28 Ramos H, Valdivieso E, Gamargo M, Dagger F, Cohen B E. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions.  J Membr Biol. 1996;  152 65-75
  • 29 Murray H W, Brooks E B, DeVecchio J L, Heinzel F P. Immunoenhancement combined with amphotericin B as treatment for experimental visceral leishmaniasis.  Antimicrob Agents Chemother. 2003;  47 2513-7
  • 30 Sangraula H, Sharma K K, Rijal S, Dwivedi S, Koirala S. Orally effective drugs for kala-azar (visceral leishmaniasis): focus on miltefosine and sitamaquine.  J Assoc Physicians India. 2003;  51 686-90
  • 31 Jha T K, Sundar S, Thakur C P, Felton J M, Sabin A J, Horton J. A phase ii dose-ranging study of sitamaquine for the treatment of visceral leishmaniasis in India.  Am J Trop Med Hyg. 2005;  73 1005-11

C. Di Giorgio

Laboratoire de Parasitologie, Hygiène et Zoologie

Faculté de Pharmacie

27 Bd. Jean Moulin

13385 Marseille Cedex 5

France

Email: carole.digiorgio@pharmacie.univ-mrs.fr

    >