Semin Neurol 2006; 26(5): 515-522
DOI: 10.1055/s-2006-951624
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Genetic Disorders Producing Compressive Radiculopathy

Joseph M. Corey1
  • 1Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan
Further Information

Publication History

Publication Date:
17 October 2006 (online)

ABSTRACT

Back pain is a frequent complaint seen in neurological practice. In evaluating back pain, neurologists are asked to evaluate patients for radiculopathy, determine whether they may benefit from surgery, and help guide management. Although disc herniation is the most common etiology of compressive radiculopathy, there are many other causes, including genetic disorders. This article is a discussion of genetic disorders that cause or contribute to radiculopathies. These genetic disorders include neurofibromatosis, Paget's disease of bone, and ankylosing spondylitis. Numerous genetic disorders can also lead to deformities of the spine, including spinal muscular atrophy, Friedreich's ataxia, Charcot-Marie-Tooth disease, familial dysautonomia, idiopathic torsional dystonia, Marfan's syndrome, and Ehlers-Danlos syndrome. However, the extent of radiculopathy caused by spine deformities is essentially absent from the literature. Finally, recent investigation into the heritability of disc degeneration and lumbar disc herniation suggests a significant genetic component in the etiology of lumbar disc disease.

REFERENCES

  • 1 Gillum L A, Engstrom J W. Lumbar disc disease. Medlink Neurol http://Available at: www.medlink.com Accessed July 2006
  • 2 Robertson P L. Neurofibromatosis type 1. Medlink Neurol http://Available at: www.medlink.com Accessed July 2006
  • 3 Huson S M, Compston D S, Clark P, Harper P S. A genetic study of von Recklinghausen neurofibromatosis in South East Wales: I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity.  J Med Genet. 1989;  26 704-711
  • 4 Eldridge R. Neurofibromatosis type 2. In: Rubenstein AE, Korf BR Neurofibromatosis: A Handbook for Patients, Families, and Health-Care Professionals. 1st ed. New York; Thieme 1990: 29-39
  • 5 Robertson P L. Neurofibromatosis type 2. Medlink Neurol http://Available at: www.medlink.com Accessed July 2006
  • 6 Huson S M. Neurofibromatosis 1: a clinical and genetic overview. In: Huson SM, Hughes RAC The Neurofibromatoses: A Pathogenetic and Clinical Overview. London; Chapman and Hall 1994: 160-203
  • 7 Daston M M, Scrable H, Nordlund M, Sturbaum A K, Nissen L M, Ratner N. The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells and oligodendrocytes.  Neuron. 1992;  8 415-428
  • 8 Gutmann D H. Recent insights into neurofibromatosis type 1: clear genetic progress.  Arch Neurol. 1998;  55 778-780
  • 9 Wimmer K, Muhlbauer M, Eckart M et al.. A patient severely affected by spinal neurofibromas carries a recurrent splice site mutation in the NF1 gene.  Eur J Hum Genet. 2002;  10 334-338
  • 10 Tonsgard J H, Kwak S M, Short M P, Dachman A H. CT imaging in adults with neurofibromatosis-1: frequent asymptomatic plexiform lesions.  Neurology. 1998;  50 1755-1760
  • 11 Ars E, Kruyer H, Gaona A et al.. A clinical variant of neurofibromatosis type 1: familial spinal neurofibromatosis with a frameshift mutation in the NF1 gene.  Am J Hum Genet. 1998;  62 834-841
  • 12 Pulst S M, Riccardi V M, Fain P, Korenberg J R. Familial spinal neurofibromatosis: clinical and DNA linkage analysis.  Neurology. 1991;  41 1923-1927
  • 13 Kaufmann D, Muller R, Bartelt B et al.. Spinal neurofibromatosis without cafe-au-lait macules in two families with null mutations of the NF1 gene.  Am J Hum Genet. 2001;  69 1395-1400
  • 14 Thakkar S D, Feigen U, Mautner V F. Spinal tumours in neurofibromatosis type 1: an MRI study of frequency, multiplicity and variety.  Neuroradiology. 1999;  41 625-629
  • 15 Dyck P J. Histologic measurements and fine structure of biopsied sural nerve: normal, and in peroneal muscular atrophy, hypertrophic neuropathy, and congenital sensory neuropathy.  Mayo Clin Proc. 1966;  41 742-774
  • 16 Gondim F A, Thomas F P. Charcot-Marie-Tooth disease type 1A. Medlink Neurol http://Available at: www.medlink.com Accessed July 2006
  • 17 Marques Jr W, Neto J M, Barreira A A. Dejerine-Sottas' neuropathy caused by the missense mutation PMP22 Ser72Leu.  Acta Neurol Scand. 2004;  110 196-199
  • 18 Rosen S A, Wang H, Cornblath D R, Uematsu S, Hurko O. Compression syndromes due to hypertrophic nerve roots in hereditary motor sensory neuropathy type I.  Neurology. 1989;  39 1173-1177
  • 19 Ross A. Zum Begriff der neurogenn Claudicatio Intermittens.  Munch Med Wochenschr. 1975;  117 1609-1610
  • 20 Haubrich C, Krings T, Senderek J et al.. Hypertrophic nerve roots in a case of Roussy-Levy syndrome.  Neuroradiology. 2002;  44 933-937
  • 21 Poncelet A. Neurologic complications of Paget disease of the bone. Medlink Neurol http://Available at: www.medlink.com Accessed July 2006
  • 22 Ooi C G, Fraser W D. Paget's disease of bone.  Postgrad Med J. 1997;  73 69-74
  • 23 Hadjipavlou A, Lander P. Paget disease of the spine.  J Bone Joint Surg Am. 1991;  73 1376-1381
  • 24 Hocking L J, Lucas G J, Daroszewska A et al.. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease.  Hum Mol Genet. 2002;  11 2735-2739
  • 25 Melick R A, Ebeling P, Hjorth R J. Improvement in paraplegia in vertebral Paget's disease treated with calcitonin.  BMJ. 1976;  1 627-628
  • 26 Nicholas J J, Helfrich D J, Cooperstein L, Goodman M. Clinical and radiographic improvement of bone of the second lumbar vertebra in Paget's disease following therapy with etidronate disodium: a case report.  Arthritis Rheum. 1989;  32 776-779
  • 27 Wallace E, Wong J, Reid I. Pamidronate treatment of the neurologic sequelae of pagetic spinal stenosis.  Arch Intern Med. 1995;  155 1813-1815
  • 28 Carlini W G. Ankylosing spondylitis. Medlink Neurol http://Available at: www.medlink.com Accessed July 2006
  • 29 Reveille J D. The genetic basis of spondyloarthritis.  Curr Rheumatol Rep. 2004;  6 117-125
  • 30 Gonzalez S, Martinez-Borra J, Lopez-Larrea C. Immunogenetics, HLA-B27, and spondyloarthropathies.  Curr Opin Rheumatol. 1999;  11 257-264
  • 31 Laval S H, Timms A, Edwards S et al.. Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci.  Am J Hum Genet. 2001;  68 918-926
  • 32 Maksymowych W P, Rahman P, Reeve J P, Gladman D D, Peddle L, Inman R D. Association of the IL1 gene cluster with susceptibility to ankylosing spondylitis: an analysis of three Canadian populations.  Arthritis Rheum. 2006;  54 974-985
  • 33 Timms A E, Crane A M, Sims A M et al.. The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis.  Am J Hum Genet. 2004;  75 587-595
  • 34 Feldtkeller E, Vosse D, Geusens P, van der Linden S. Prevalence and annual incidence of vertebral fractures in patients with ankylosing spondylitis.  Rheumatol Int. 2006;  26 234-239
  • 35 Zdichavsky M, Blauth M, Knop C, Lange U, Krettek C, Bastian L. Ankylosing spondylitis: therapy and complications of 34 spine fractures.  Chirurg. 2005;  76 967-975
  • 36 Bilgen I G, Yunten N, Ustun E E, Oksel F, Gumusdis G. Adhesive arachnoiditis causing cauda equina syndrome in ankylosing spondylitis: CT and MRI demonstration of dural calcification and a dorsal dural diverticulum.  Neuroradiology. 1999;  41 508-511
  • 37 Sharp J, Purser D W. Spontaneous atlantoaxial dislocation in ankylosing spondylitis.  Ann Rheum Dis. 1961;  20 47-77
  • 38 Hensinger R N, MacEwen G D. Spinal deformity associated with heritable neurological conditions: spinal muscular atrophy, Friedreich's ataxia, familial dysautonomia, and Charcot-Marie-Tooth disease.  J Bone Joint Surg Am. 1976;  58 13-24
  • 39 Allard P, Dansereau J, Thiry P S, Geoffroy G, Raso J V, Duhaime M. Scoliosis in Friedreich's ataxia.  Can J Neurol Sci. 1982;  9 105-111
  • 40 Stanitski C L, Micheli L J, Hall J E. The correction of spinal deformity in idiopathic torsional dystonias.  J Bone Joint Surg Am. 1983;  65 980-984
  • 41 Fricka K B, Kim C, Newton P O. Spinal lordosis with marked opisthotonus secondary to dystonia musculorum deformans: case report with surgical management.  Spine. 2001;  26 2283-2288
  • 42 Lee B, Godfrey M, Vitale E et al.. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes.  Nature. 1991;  352 330-334
  • 43 Godfrey M. The Marfan syndrome. In: Beighton P McKusick's Heritable Disorders of Connective Tissue. 5th ed. St. Louis; Mosby-Year Book 1993: 51-135
  • 44 Pretorius M E, Butler I J. Neurologic manifestations of Ehlers-Danlos syndrome.  Neurology. 1983;  33 1087-1089
  • 45 Beighton P. The Ehlers-Danlos syndromes. In: Beighton P McKusick's Heritable Disorders of Connective Tissue. 5th ed. St. Louis; Mosby-Year Book 1993: 189-251
  • 46 Coventry M B. Some skeletal changes in the Ehlers-Danlos syndrome.  J Bone Joint Surg Am. 1961;  43 855-860
  • 47 MacFarlane I L. Ehlers-Danlos syndrome presenting certain unusual features.  J Bone Joint Surg Br. 1959;  41 541-545
  • 48 Jarvik J G, Hollingworth W, Heagerty P J, Haynor D R, Boyko E J, Deyo R A. Three-year incidence of low back pain in an initially asymptomatic cohort: clinical and imaging risk factors.  Spine. 2005;  30 1541-1548
  • 49 Dawson D M, Feske S K. Degenerative and compressive structural disorders. In: Goetz CG, Pappert EJ Textbook of Clinical Neurology. Philadelphia; W.B. Saunders 1999: 539-559
  • 50 Battie M C, Videman T. Lumbar disc degeneration: epidemiology and genetics.  J Bone Joint Surg Am. 2006;  88(suppl 2) 3-9
  • 51 Battie M C, Videman T, Parent E. Lumbar disc degeneration: epidemiology and genetic influences.  Spine. 2004;  29 2679-2690
  • 52 Battie M C, Videman T, Gibbons L E, Fisher L D, Manninen H, Gill K. Determinants of lumbar disc degeneration: a study relating lifetime exposures and magnetic resonance imaging findings in identical twins.  Spine. 1995;  20 2601-2612
  • 53 Battie M C, Haynor D R, Fisher L D, Gill K, Gibbons L E, Videman T. Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins.  J Bone Joint Surg Am. 1995;  77 1662-1670
  • 54 Sambrook P N, MacGregor A J, Spector T D. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins.  Arthritis Rheum. 1999;  42 366-372
  • 55 Matsui H, Kanamori M, Ishihara H, Yudoh K, Naruse Y, Tsuji H. Familial predisposition for lumbar degenerative disc disease: a case-control study.  Spine. 1998;  23 1029-1034
  • 56 Varlotta G P, Brown M D, Kelsey J L, Golden A L. Familial predisposition for herniation of a lumbar disc in patients who are less than twenty-one years old.  J Bone Joint Surg Am. 1991;  73 124-128
  • 57 Matsui H, Terahata N, Tsuji H, Hirano N, Naruse Y. Familial predisposition and clustering for juvenile lumbar disc herniation.  Spine. 1992;  17 1323-1328
  • 58 Nelson C L, Janecki C J, Gildenberg P L, Sava G. Disk protrusions in the young.  Clin Orthop Relat Res. 1972;  88 142-150
  • 59 Khoury M J, Beaty T H, Cohen B H. Fundamentals of Genetic Epidemiology. New York; Oxford University Press 1993
  • 60 Jones G, White C, Sambrook P, Eisman J. Allelic variation in the vitamin D receptor, lifestyle factors and lumbar spinal degenerative disease.  Ann Rheum Dis. 1998;  57 94-99
  • 61 Videman T, Leppavuori J, Kaprio J et al.. Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration.  Spine. 1998;  23 2477-2485
  • 62 Annunen S, Paassilta P, Lohiniva J et al.. An allele of COL9A2 associated with intervertebral disc disease.  Science. 1999;  285 409-412
  • 63 Karppinen J, Paakko E, Raina S et al.. Magnetic resonance imaging findings in relation to the COL9A2 tryptophan allele among patients with sciatica.  Spine. 2002;  27 78-83
  • 64 Paassilta P, Lohiniva J, Goring H H et al.. Identification of a novel common genetic risk factor for lumbar disk disease.  JAMA. 2001;  285 1843-1849
  • 65 Solovieva S, Lohiniva J, Leino-Arjas P et al.. COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar spine: evidence of gene-environment interaction.  Spine. 2002;  27 2691-2696
  • 66 Goupille P, Jayson M I, Valat J P, Freemont A J. Matrix metalloproteinases: the clue to intervertebral disc degeneration?.  Spine. 1998;  23 1612-1626
  • 67 Takahashi M, Haro H, Wakabayashi Y, Kawauchi T, Komori H, Shinomiya K. The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene.  J Bone Joint Surg Br. 2001;  83 491-495
  • 68 Hukins D W. Tissue engineering: a live disc.  Nat Mater. 2005;  4 881-882
  • 69 Anderson D G, Risbud M V, Shapiro I M, Vaccaro A R, Albert T J. Cell-based therapy for disc repair.  Spine J. 2005;  5 297S-303S
  • 70 Evans C. Potential biologic therapies for the intervertebral disc.  J Bone Joint Surg Am. 2006;  88(suppl 2) 95-98
  • 71 Nishida K, Doita M, Takada T et al.. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy.  Spine. 2006;  31 1415-1419

Joseph M CoreyM.D. Ph.D. 

Assistant Professor, Department of Neurology, University of Michigan Medical School

5013 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48103-2200

    >